Skip to main content

Charge-hyperscaling violating Lifshitz hydrodynamics from black-holes

A preprint version of the article is available at arXiv.

Abstract

Non-equilibrium black hole horizons are considered in scaling theories with generic Lifshitz invariance and an unbroken U(1) symmetry. There is also charge-hyperscaling violation associated with a non-trivial conduction exponent. The boundary stress tensor is computed and renormalized and the associated hydrodynamic equations derived. Upon a non-trivial redefinition of boundary sources associated with the U(1) gauge field, the equations are mapped to the standard non-relativistic hydrodynamics equations coupled to a mass current and an external Newton potential in accordance with the general theory of [43]. The shear viscosity to entropy ratio is the same as in the relativistic case.

References

  1. [1]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  3. [3]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  4. [4]

    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  6. [6]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  7. [7]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  8. [8]

    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  9. [9]

    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  10. [10]

    D.M. Eagles, Possible Pairing without Superconductivity at Low Carrier Concentrations in Bulk and Thin-Film Superconducting Semiconductors, Phys. Rev. 186 (1969) 456 [INSPIRE].

    Article  ADS  Google Scholar 

  11. [11]

    P. Nozieres and S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconduct ivity, J. Low. Temp. Phys. 59 (1985) 195 [INSPIRE].

    Article  ADS  Google Scholar 

  12. [12]

    K.M. O’Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade and J.E. Thomas, Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms, Science 298 (2002) 2179 [cond-mat/0212463] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    C.A. Regal, M. Greiner and D.S. Jin, Observation of Resonance Condensation of Fermionic Atom Pairs, Phys. Rev. Lett. 92 (2004) 040403 [INSPIRE].

    Article  ADS  Google Scholar 

  14. [14]

    M. Bartenstein et al., Crossover from a Molecular Bose-Einstein Condensate to a Degenerate Fermi Gas, Phys. Rev. Lett. 92 (2004) 120401 [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    R.M. Hornreich, M. Luban and S. Shtrikman, Critical Behavior at the Onset of \( \overrightarrow{k} \) -Space Instability on the λ Line, Phys. Rev. Lett. 35 (1975) 1678 [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    T. Mehen, I.W. Stewart and M.B. Wise, Conformal invariance for nonrelativistic field theory, Phys. Lett. B 474 (2000) 145 [hep-th/9910025] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  17. [17]

    E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals Phys. 310 (2004) 493 [cond-mat/0311466] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  18. [18]

    C. Cao et al., Universal Quantum Viscosity in a Unitary Fermi Gas, Science 331 (2011) 58 [arXiv:1007.2625] [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    D. Forcella, J. Zaanen, D. Valentinis and D. van der Marel, Electromagnetic properties of viscous charged fluids, Phys. Rev. B 90 (2014) 035143 [arXiv:1406.1356] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    M. Muller and S. Sachdev, Collective cyclotron motion of the relativistic plasma in graphene, Phys. Rev. B 78 (2008) 115419 [arXiv:0801.2970] [INSPIRE].

    Article  ADS  Google Scholar 

  21. [21]

    L. Fritz, J. Schmalian, M. Müller and S Sachdev, Quantum critical transport in clean graphene, Phys. Rev. B 78 (2008) 085416 [arXiv:0802.4289].

    Article  ADS  Google Scholar 

  22. [22]

    M. Mueller, J. Schmalian and L. Fritz, Graphenea nearly perfect fluid, Phys. Rev. Lett. 103 (2009) 025301 [arXiv:0903.4178].

    Article  ADS  Google Scholar 

  23. [23]

    D.T. Son, Toward an AdS/cold atoms correspondence: A geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  25. [25]

    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. [26]

    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  27. [27]

    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  28. [28]

    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  29. [29]

    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  30. [30]

    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    B. Gouteraux, Universal scaling properties of extremal cohesive holographic phases, JHEP 01 (2014) 080 [arXiv:1308.2084] [INSPIRE].

    Article  ADS  Google Scholar 

  33. [33]

    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic Models for Theories with Hyperscaling Violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].

    Article  ADS  Google Scholar 

  34. [34]

    A. Karch, Conductivities for Hyperscaling Violating Geometries, JHEP 06 (2014) 140 [arXiv:1405.2926] [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638 [INSPIRE].

  36. [36]

    K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, arXiv:1408.6855 [INSPIRE].

  37. [37]

    K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (2015) 123 [arXiv:1411.7024] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  38. [38]

    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan Geometry and Lifshitz Holography, Phys. Rev. D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].

    MATH  ADS  Google Scholar 

  39. [39]

    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary Stress-Energy Tensor and Newton-Cartan Geometry in Lifshitz Holography, JHEP 01 (2014) 057 [arXiv:1311.6471] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  40. [40]

    E.A. Bergshoeff, J. Hartong and J. Rosseel, Torsional Newton-Cartan geometry and the Schrödinger algebra, Class. Quant. Grav. 32 (2015) 135017 [arXiv:1409.5555] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  41. [41]

    J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schrödinger holography, Phys. Lett. B 746 (2015) 318 [arXiv:1409.1519] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  42. [42]

    J. Hartong, E. Kiritsis and N.A. Obers, Schrödinger Invariance from Lifshitz Isometries in Holography and Field Theory, Phys. Rev. D 92 (2015) 066003 [arXiv:1409.1522] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    J. Hartong, E. Kiritsis and N.A. Obers, Field Theory on Newton-Cartan Backgrounds and Symmetries of the Lifshitz Vacuum, JHEP 08 (2015) 006 [arXiv:1502.00228] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  44. [44]

    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  45. [45]

    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  46. [46]

    W. Chemissany and I. Papadimitriou, Lifshitz holography: The whole shebang, JHEP 01 (2015) 052 [arXiv:1408.0795] [INSPIRE].

    Article  ADS  Google Scholar 

  47. [47]

    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  48. [48]

    M. Rangamani, S.F. Ross, D.T. Son and E.G. Thompson, Conformal non-relativistic hydrodynamics from gravity, JHEP 01 (2009) 075 [arXiv:0811.2049] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  49. [49]

    D.K. Brattan, Charged, conformal non-relativistic hydrodynamics, JHEP 10 (2010) 015 [arXiv:1003.0797] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  50. [50]

    C. Hoyos, B.S. Kim and Y. Oz, Lifshitz Field Theories at Non-Zero Temperature, Hydrodynamics and Gravity, JHEP 03 (2014) 029 [arXiv:1309.6794] [INSPIRE].

    Article  ADS  Google Scholar 

  51. [51]

    C. Hoyos, B.S. Kim and Y. Oz, Bulk Viscosity in Holographic Lifshitz Hydrodynamics, JHEP 03 (2014) 050 [arXiv:1312.6380] [INSPIRE].

    Article  ADS  Google Scholar 

  52. [52]

    D. Roychowdhury, Magnetoconductivity in chiral Lifshitz hydrodynamics, JHEP 09 (2015) 145 [arXiv:1508.02002] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. [53]

    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    Article  ADS  Google Scholar 

  54. [54]

    S. Chapman, C. Hoyos and Y. Oz, Lifshitz Superfluid Hydrodynamics, JHEP 07 (2014) 027 [arXiv:1402.2981] [INSPIRE].

    Article  ADS  Google Scholar 

  55. [55]

    C. Hoyos, A. Meyer and Y. Oz, Parity Breaking Transport in Lifshitz Hydrodynamics, JHEP 09 (2015) 031 [arXiv:1505.03141] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  56. [56]

    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic Models for Theories with Hyperscaling Violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].

    Article  ADS  Google Scholar 

  57. [57]

    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  58. [58]

    I.S. Gradshteyn, I.M. Ryzhik, A. Jeffrey and D. Zwillinger eds., Table of Integrals, Series, and Products, 7th edition, Academic Press, (2007).

  59. [59]

    B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  60. [60]

    J. Hartong and N. Obers, private communication.

  61. [61]

    E. Kiritsis, Supergravity, D-brane probes and thermal super Yang-Mills: A comparison, JHEP 10 (1999) 010 [hep-th/9906206] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  62. [62]

    S.S. Gubser, Time warps, JHEP 01 (2010) 020 [arXiv:0812.5107] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  63. [63]

    K. Jensen and A. Karch, Revisiting non-relativistic limits, JHEP 04 (2015) 155 [arXiv:1412.2738] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  64. [64]

    H.P. Künzle, Galilei and lorentz structures on space-time: comparison of the corresponding geometry and physics, Ann. Inst. Henri Poincaré 17 (1972) 337 [INSPIRE].

    MathSciNet  Google Scholar 

  65. [65]

    C. Duval and H.P. Kunzle, Minimal Gravitational Coupling in the Newtonian Theory and the Covariant Schrödinger Equation, Gen. Rel. Grav. 16 (1984) 333 [INSPIRE].

    Article  ADS  Google Scholar 

  66. [66]

    C. Duval, On Galileian isometries, Class. Quant. Grav. 10 (1993) 2217 [arXiv:0903.1641] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Matsuo.

Additional information

ArXiv ePrint: 1508.02494

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiritsis, E., Matsuo, Y. Charge-hyperscaling violating Lifshitz hydrodynamics from black-holes. J. High Energ. Phys. 2015, 1–51 (2015). https://doi.org/10.1007/JHEP12(2015)076

Download citation

Keywords

  • Gauge-gravity correspondence
  • AdS-CFT Correspondence
  • Black Holes
  • Holography and condensed matter physics (AdS/CMT)