Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–49 | Cite as

Top quark pair production at NNLO in the quark-antiquark channel

  • Gabriel Abelof
  • Aude Gehrmann-De Ridder
  • Imre Majer
Open Access
Regular Article - Theoretical Physics

Abstract

We present the derivation of the NNLO two-parton final state contributions to top pair production in the quark-antiquark channel proportionnal to the leading colour factor N c 2 . Together with the three and four-parton NNLO contributions presented in a previous publication, this enables us to complete the phenomenologically most important NNLO corrections to top pair hadro-production in this channel. We derive this two-parton contribution using the massive extension of the NNLO antenna subtraction formalism and implement those corrections in a parton-level event generator providing full kinematical information on all final state particles. In addition, we also derive the heavy quark contributions proportional to N h . Combining the new leading-colour and heavy quark contributions together with the light quark contributions derived previously, we present NNLO differential distributions for LHC and Tevatron. We also compute the differential top quark forward-backward asymmetry at Tevatron and find that our results are in good agreement with the measurements by the D0 collaboration.

Keywords

QCD Phenomenology Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D0 collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev. Lett. 74 (1995) 2632 [hep-ex/9503003] [INSPIRE].
  2. [2]
    CDF collaboration, F. Abe et al., Observation of top quark production in \( p\overline{p} \) collisions, Phys. Rev. Lett. 74 (1995) 2626 [hep-ex/9503002] [INSPIRE].
  3. [3]
    CDF collaboration, T. Aaltonen et al., First measurement of the \( t\overline{t} \) differential cross section \( d\sigma /d{M}_{t\overline{t}} \) in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [INSPIRE].
  4. [4]
    D0 collaboration, V.M. Abazov et al., Measurement of differential \( t\overline{t} \) production cross sections in \( p\overline{p} \) collisions, Phys. Rev. D 90 (2014) 092006 [arXiv:1401.5785] [INSPIRE].
  5. [5]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2261 [arXiv:1207.5644] [INSPIRE].
  7. [7]
    ATLAS collaboration, Measurements of normalized differential cross sections for \( t\overline{t} \) production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 90 (2014) 072004 [arXiv:1407.0371] [INSPIRE].
  8. [8]
    ATLAS collaboration, Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at \( \sqrt{s}=7 \) TeV in the ATLAS detector, JHEP 06 (2015) 100 [arXiv:1502.05923] [INSPIRE].
  9. [9]
    CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].
  10. [10]
    CMS collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 542 [arXiv:1505.04480] [INSPIRE].
  11. [11]
    ATLAS collaboration, Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1509.02358 [INSPIRE].
  12. [12]
    CMS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV using a template method, arXiv:1508.03862 [INSPIRE].
  13. [13]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Czakon, P. Fiedler and A. Mitov, Resolving the Tevatron top quark forward-backward asymmetry puzzle: fully differential next-to-next-to-leading-order calculation, Phys. Rev. Lett. 115 (2015) 052001 [arXiv:1411.3007] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, arXiv:1511.00549 [INSPIRE].
  16. [16]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Abelof, A. Gehrmann-De Ridder, P. Maierhofer and S. Pozzorini, NNLO QCD subtraction for top-antitop production in the \( q\overline{q} \) channel, JHEP 08 (2014) 035 [arXiv:1404.6493] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Currie, E.W.N. Glover and S. Wells, Infrared structure at NNLO using antenna subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E.W. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].CrossRefMATHGoogle Scholar
  21. [21]
    J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering, JHEP 01 (2014) 110 [arXiv:1310.3993] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, Real-virtual corrections for gluon scattering at NNLO, JHEP 02 (2012) 141 [arXiv:1112.3613] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and J. Pires, Double virtual corrections for gluon scattering at NNLO, JHEP 02 (2013) 026 [arXiv:1211.2710] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Institute for Theoretical Physics, ETH Zürich collaboration, G. Abelof, O. Dekkers and A. Gehrmann-De Ridder, Antenna subtraction with massive fermions at NNLO: double real initial-final configurations, JHEP 12 (2012) 107 [arXiv:1210.5059] [INSPIRE].
  26. [26]
    G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to \( t\overline{t} \) production at the LHC: the \( gg\to t\overline{t}q\overline{q} \) channel, JHEP 11 (2012) 074 [arXiv:1207.6546] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Gehrmann-De Ridder and M. Ritzmann, NLO antenna subtraction with massive fermions, JHEP 07 (2009) 041 [arXiv:0904.3297] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to \( t\overline{t} \) production at the LHC: the all-fermion processes, JHEP 04 (2012) 076 [arXiv:1112.4736] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Abelof and A. Gehrmann-De Ridder, Light fermionic NNLO QCD corrections to top-antitop production in the quark-antiquark channel, JHEP 12 (2014) 076 [arXiv:1409.3148] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maître and C. Studerus, Two-loop fermionic corrections to heavy-quark pair production: the quark-antiquark channel, JHEP 07 (2008) 129 [arXiv:0806.2301] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-loop planar corrections to heavy-quark pair production in the quark-antiquark channel, JHEP 08 (2009) 067 [arXiv:0906.3671] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, Two-loop leading color corrections to heavy-quark pair production in the gluon fusion channel, JHEP 01 (2011) 102 [arXiv:1011.6661] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, Light-quark two-loop corrections to heavy-quark pair production in the gluon fusion channel, JHEP 12 (2013) 038 [arXiv:1309.4450] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  42. [42]
    M. Brucherseifer, F. Caola and K. Melnikov, O(α s2) corrections to fully-differential top quark decays, JHEP 04 (2013) 059 [arXiv:1301.7133] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Catani, S. Dittmaier and Z. Trócsányi, One loop singular behavior of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  45. [45]
    J.G. Korner, Z. Merebashvili and M. Rogal, NNLO O(α s4) results for heavy quark pair production in quark-antiquark collisions: the one-loop squared contributions, Phys. Rev. D 77 (2008) 094011 [Erratum ibid. D 85 (2012) 119904] [arXiv:0802.0106] [INSPIRE].
  46. [46]
    S. Buehler and C. Duhr, CHAPLINcomplex harmonic polylogarithms in fortran, Computer Physics Communication 185 (2014) 2703 [arXiv:1106.5739] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes, JHEP 05 (2007) 001 [hep-ph/0612149] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett. 110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    CDF collaboration, T. Aaltonen et al., Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87 (2013) 092002 [arXiv:1211.1003] [INSPIRE].
  55. [55]
    D0 collaboration, V.M. Abazov et al., Measurement of the forward-backward asymmetry in top quark-antiquark production in \( p\overline{p} \) collisions using the lepton+jets channel, Phys. Rev. D 90 (2014) 072011 [arXiv:1405.0421] [INSPIRE].
  56. [56]
    T. Huber and D. Maître, HypExp: a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Gabriel Abelof
    • 1
    • 2
  • Aude Gehrmann-De Ridder
    • 3
    • 4
  • Imre Majer
    • 3
    • 5
  1. 1.Department of Physics & AstronomyNorthwestern UniversityEvanstonU.S.A.
  2. 2.High Energy Physics DivisionArgonne National LaboratoryArgonneU.S.A.
  3. 3.Institute for Theoretical PhysicsETHZürichSwitzerland
  4. 4.Physics Institute University of ZürichZürichSwitzerland
  5. 5.Department of Physics and AstronomySeoul National UniversitySeoulKorea

Personalised recommendations