Skip to main content

A Lagrangian for self-dual strings

A preprint version of the article is available at arXiv.

Abstract

We propose a Lagrangian for the low-energy theory that resides at the (1 + 1)-dimensional intersection of N semi-infinite M2-branes ending orthogonally on M M5-branes in \( {\mathbb{R}}^{1,2}\times {\mathbb{C}}^4/{\mathbb{Z}}_k \) (for arbitrary positive integers N, M, k). We formulate this theory as a 2d boundary theory with explicit \( \mathcal{N}=\left(1,\;1\right) \) supersymmetry that contains two superfields in the bi-fundamental representation of U(N )×U(M ) interacting with the (2+1)-dimensional U(N ) k × U(N )k ABJM Chern-Simons-matter theory in the bulk. We postulate that the boundary theory exhibits in the deep infrared supersymmetry enhancement to \( \mathcal{N}=\left(4,\;2\right) \), or \( \mathcal{N}=\left(4,\;4\right) \) depending on the value of k. Arguments in favor of the proposal follow from the study of the open string theory of a U-dual type IIB Hanany-Witten setup. To formulate the bulk-boundary interactions special care is taken to incorporate all the expected boundary effects on gauge symmetry, supersymmetry, and other global symmetries.

References

  1. [1]

    P.S. Howe, N.D. Lambert and P.C. West, The selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  2. [2]

    V. Niarchos and K. Siampos, M 2-M 5 blackfold funnels, JHEP 06 (2012) 175 [arXiv:1205.1535] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    V. Niarchos and K. Siampos, Entropy of the self-dual string soliton, JHEP 07 (2012) 134 [arXiv:1206.2935] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    V. Niarchos and K. Siampos, The black M 2-M 5 ring intersection spins, PoS Corfu2012 (2013) 088 [arXiv:1302.0854] [INSPIRE].

    Google Scholar 

  7. [7]

    D.S. Berman and J.A. Harvey, The self-dual string and anomalies in the M 5-brane, JHEP 11 (2004) 015 [hep-th/0408198] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    S. Bolognesi and K. Lee, 1/4 BPS string junctions and N 3 problem in 6-dim (2, 0) superconformal theories, Phys. Rev. D 84 (2011) 126018 [arXiv:1105.5073] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    O. Lunin, Strings ending on branes from supergravity, JHEP 09 (2007) 093 [arXiv:0706.3396] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory solutions invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys. 62 (2014) 207 [arXiv:1312.5477].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    A. Basu and J.A. Harvey, The M 2-M 5 brane system and a generalized Nahms equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    D.S. Berman, M.J. Perry, E. Sezgin and D.C. Thompson, Boundary conditions for interacting membranes, JHEP 04 (2010) 025 [arXiv:0912.3504] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    D.S. Berman and D.C. Thompson, Membranes with a boundary, Nucl. Phys. B 820 (2009) 503 [arXiv:0904.0241] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    D.V. Belyaev and P. van Nieuwenhuizen, Rigid supersymmetry with boundaries, JHEP 04 (2008) 008 [arXiv:0801.2377] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    C.-S. Chu and D.J. Smith, Multiple self-dual strings on M 5-branes, JHEP 01 (2010) 001 [arXiv:0909.2333] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    M. Faizal and D.J. Smith, Supersymmetric Chern-Simons theory in presence of a boundary, Phys. Rev. D 85 (2012) 105007 [arXiv:1112.6070] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart and C. Vafa, M-strings, Commun. Math. Phys. 334 (2015) 779 [arXiv:1305.6322] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  19. [19]

    B. Haghighat, C. Kozcaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev. D 89 (2014) 046003 [arXiv:1310.1185] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    J. Kim, S. Kim, K. Lee, J. Park and C. Vafa, Elliptic genus of E-strings, arXiv:1411.2324 [INSPIRE].

  21. [21]

    K. Hosomichi and S. Lee, Self-dual strings and 2D SYM, JHEP 01 (2015) 076 [arXiv:1406.1802] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    J. Gomis and B. Le Floch, M 2-brane surface operators and gauge theory dualities in Toda, arXiv:1407.1852 [INSPIRE].

  23. [23]

    A. Armoni and V. Niarchos, Defects in Chern-Simons theory, gauged WZW models on the brane and level-rank duality, JHEP 07 (2015) 062 [arXiv:1505.02916] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p, q)-five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  26. [26]

    O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  27. [27]

    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

    MATH  Google Scholar 

  29. [29]

    E.A. Ivanov, Chern-Simons matter systems with manifest N = 2 supersymmetry, Phys. Lett. B 268 (1991) 203 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett. 87 (2001) 061601 [hep-th/0105108] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vasilis Niarchos.

Additional information

ArXiv ePrint: 1509.07676

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niarchos, V. A Lagrangian for self-dual strings. J. High Energ. Phys. 2015, 1–19 (2015). https://doi.org/10.1007/JHEP12(2015)060

Download citation

Keywords

  • Supersymmetric gauge theory
  • Intersecting branes models
  • Chern-Simons Theories
  • M-Theory