Advertisement

Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–33 | Cite as

An algebraic approach to the scattering equations

  • Rijun Huang
  • Junjie RaoEmail author
  • Bo Feng
  • Yang-Hui He
Open Access
Regular Article - Theoretical Physics

Abstract

We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

Keywords

Scattering Amplitudes Differential and Algebraic Geometry Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  2. [2]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    D. Fairlie and D. Roberts, Dual Models without Tachyonsa New Approach, unpublished, Durham preprint PRINT-72-2440 (1972).Google Scholar
  7. [7]
    D. Roberts, Mathematical Structure of Dual Amplitudes, Ph.D. Thesis, Durham University, Durham U.K. (1972).Google Scholar
  8. [8]
    D.B. Fairlie, A Coding of Real Null Four-Momenta into World-Sheet Co-ordinates, Adv. Math. Phys. 2009 (2009) 284689 [arXiv:0805.2263] [INSPIRE].CrossRefzbMATHGoogle Scholar
  9. [9]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Witten, Parity invariance for strings in twistor space, Adv. Theor. Math. Phys. 8 (2004) 779 [hep-th/0403199] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Caputa and S. Hirano, Observations on Open and Closed String Scattering Amplitudes at High Energies, JHEP 02 (2012) 111 [arXiv:1108.2381] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    P. Caputa, Lightlike contours with fermions, Phys. Lett. B 716 (2012) 475 [arXiv:1205.6369] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    Y. Makeenko and P. Olesen, The QCD scattering amplitude from area behaved Wilson loops, Phys. Lett. B 709 (2012) 285 [arXiv:1111.5606] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Cachazo, Fundamental BCJ Relation in N = 4 SYM From The Connected Formulation, arXiv:1206.5970 [INSPIRE].
  15. [15]
    L. Dolan and P. Goddard, Proof of the Formula of Cachazo, He and Yuan for Yang-Mills Tree Amplitudes in Arbitrary Dimension, JHEP 05 (2014) 010 [arXiv:1311.5200] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    H. Gomez and E.Y. Yuan, N-point tree-level scattering amplitude in the new Berkovitsstring, JHEP 04 (2014) 046 [arXiv:1312.5485] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E. Casali and P. Tourkine, Infrared behaviour of the one-loop scattering equations and supergravity integrands, JHEP 04 (2015) 013 [arXiv:1412.3787] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    T. Adamo and E. Casali, Scattering equations, supergravity integrands and pure spinors, JHEP 05 (2015) 120 [arXiv:1502.06826] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New Ambitwistor String Theories, JHEP 11 (2015) 038 [arXiv:1506.08771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    K. Ohmori, Worldsheet Geometries of Ambitwistor String, JHEP 06 (2015) 075 [arXiv:1504.02675] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop Integrands for Scattering Amplitudes from the Riemann Sphere, Phys. Rev. Lett. 115 (2015) 121603 [arXiv:1507.00321] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, P. Tourkine and P. Vanhove, Scattering Equations and String Theory Amplitudes, Phys. Rev. D 90 (2014) 106002 [arXiv:1403.4553] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily and P.H. Damgaard, Integration Rules for Scattering Equations, JHEP 09 (2015) 129 [arXiv:1506.06137] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily and P.H. Damgaard, Scattering Equations and Feynman Diagrams, JHEP 09 (2015) 136 [arXiv:1507.00997] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily, P.H. Damgaard and B. Feng, Integration Rules for Loop Scattering Equations, JHEP 11 (2015) 080 [arXiv:1508.03627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    S. He and E.Y. Yuan, One-loop Scattering Equations and Amplitudes from Forward Limit, Phys. Rev. D 92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily, S. Caron-Huot, P.H. Damgaard and B. Feng, New Representations of the Perturbative S-matrix, arXiv:1509.02169 [INSPIRE].
  35. [35]
    C. Kalousios, Scattering equations, generating functions and all massless five point tree amplitudes, JHEP 05 (2015) 054 [arXiv:1502.07711] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    F. Cachazo and H. Gomez, Computation of Contour Integrals on \( {\mathrm{\mathcal{M}}}_{0,n} \), arXiv:1505.03571 [INSPIRE].
  37. [37]
    L. Dolan and P. Goddard, The Polynomial Form of the Scattering Equations, JHEP 07 (2014) 029 [arXiv:1402.7374] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    Y.-H. He, C. Matti and C. Sun, The Scattering Variety, JHEP 10 (2014) 135 [arXiv:1403.6833] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    L. Stickelberger, Ueber eine Verallgemeinerung der Kreistheilung, Math. Ann. 37 (1890) 321.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    B. Sturmfels, Solving Systems of Polynomial Equations, Cbms Regional Conference Series in Mathematics, American Mathematical Society, Providenca U.S.A. (2002). Available online at https://math.berkeley.edu/~bernd/cbms.pdf.
  41. [41]
    P. Parrilo, Algebraic Techniques and Semidefinite Optimization, Massachusetts Institute of Technology: MIT OpenCourseWare, Massachusetts Institute of Technology, Cambridge U.S.A. (2006). See lecture 15.Google Scholar
  42. [42]
    D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
  43. [43]
    W. Decker, G.-M. Greuel, G. Pfister and H. Schonemann, Singular 4-0-2A computer algebra system for polynomial computations, (2015). Available at http://www.singular.uni-kl.de.
  44. [44]
    J. Gray, Y.-H. He, A. Ilderton and A. Lukas, STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology, Comput. Phys. Commun. 180 (2009) 107 [arXiv:0801.1508] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills Amplitude Relations, Phys. Rev. D 82 (2010) 107702 [arXiv:1005.4367] [INSPIRE].ADSzbMATHGoogle Scholar
  49. [49]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, New Identities among Gauge Theory Amplitudes, Phys. Lett. B 691 (2010) 268 [arXiv:1006.3214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Proof of Gravity and Yang-Mills Amplitude Relations, JHEP 09 (2010) 067 [arXiv:1007.3111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    B. Feng, J. Rao and K. Zhou, On Multi-step BCFW Recursion Relations, JHEP 07 (2015) 058 [arXiv:1504.06306] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    D.A. Kosower, Next-to-maximal helicity violating amplitudes in gauge theory, Phys. Rev. D 71 (2005) 045007 [hep-th/0406175] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    M.-x. Luo and C.-k. Wen, Recursion relations for tree amplitudes in super gauge theories, JHEP 03 (2005) 004 [hep-th/0501121] [INSPIRE]ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Rijun Huang
    • 1
  • Junjie Rao
    • 1
    Email author
  • Bo Feng
    • 1
    • 2
  • Yang-Hui He
    • 3
    • 4
    • 5
  1. 1.Zhejiang Institute of Modern PhysicsZhejiang UniversityHangzhouP.R. China
  2. 2.Center of Mathematical ScienceZhejiang UniversityHangzhouP.R. China
  3. 3.School of PhysicsNanKai UniversityTianjinP.R. China
  4. 4.Department of MathematicsCity UniversityLondonU.K.
  5. 5.Merton CollegeUniversity of OxfordOxfordU.K.

Personalised recommendations