Advertisement

Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–34 | Cite as

Resolving boosted jets with XCone

  • Jesse ThalerEmail author
  • Thomas F. Wilkason
Open Access
Regular Article - Theoretical Physics

Abstract

We show how the recently proposed XCone jet algorithm [1] smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I.W. Stewart, F.J. Tackmann, J. Thaler, C.K. Vermilion and T.F. Wilkason, XCone: N-jettiness as an Exclusive Cone Jet Algorithm, JHEP 11 (2015) 072 [arXiv:1508.01516] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Abdesselam et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Adams et al., Towards an Understanding of the Correlations in Jet Substructure. Report of BOOST2013, hosted by the University of Arizona, 12th–16th of August 2013, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [arXiv:1309.2030] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for resonances decaying into top-quark pairs using fully hadronic decays in pp collisions with ATLAS at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 116 [arXiv:1211.2202] [INSPIRE].
  8. [8]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Gouzevitch, A. Oliveira, J. Rojo, R. Rosenfeld, G.P. Salam and V. Sanz, Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP 07 (2013) 148 [arXiv:1303.6636] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.P. Salam and G. Soyez, A Practical Seedless Infrared-Safe Cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Stoll, Vetoed jet clustering: The mass-jump algorithm, JHEP 04 (2015) 111 [arXiv:1410.4637] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Hamaguchi, S.P. Liew and M. Stoll, How to decontaminate overlapping fat jets, Phys. Rev. D 92 (2015) 015012 [arXiv:1505.02930] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A.J. Larkoski, F. Maltoni and M. Selvaggi, Tracking down hyper-boosted top quarks, JHEP 06 (2015) 032 [arXiv:1503.03347] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Spannowsky and M. Stoll, Tracking New Physics at the LHC and beyond, Phys. Rev. D 92 (2015) 054033 [arXiv:1505.01921] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J.-H. Kim, Rest Frame Subjet Algorithm With SISCone Jet For Fully Hadronic Decaying Higgs Search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Thaler, Jet maximization, axis minimization and stable cone finding, Phys. Rev. D 92 (2015) 074001 [arXiv:1506.07876] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.D. Ellis, J. Huston and M. Tonnesmann, On building better cone jet algorithms, eConf C 010630 (2001) 513 [hep-ph/0111434] [INSPIRE].
  25. [25]
    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev. D 90 (2014) 034010 [arXiv:1406.7011] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
  31. [31]
    M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    CMS collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev. D 89 (2014) 012003 [arXiv:1310.3687] [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for the bb decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector, JHEP 01 (2015) 069 [arXiv:1409.6212] [INSPIRE].
  34. [34]
    J. Gallicchio, J. Huth, M. Kagan, M.D. Schwartz, K. Black and B. Tweedie, Multivariate discrimination and the Higgs +W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.M. Butterworth, I. Ochoa and T. Scanlon, Boosted Higgs\( b\overline{b} \) in vector-boson associated production at 14 TeV, Eur. Phys. J. C 75 (2015) 366 [arXiv:1506.04973] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs Boson in New Physics Events using Jet Substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [INSPIRE].ADSGoogle Scholar
  38. [38]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
  40. [40]
    M. Wobisch, Measurement and QCD analysis of jet cross-sections in deep inelastic positron proton collisions at \( \sqrt{s}=300 \) GeV, DESY-THESIS-2000-049 (2000) [INSPIRE].
  41. [41]
    G.C. Blazey et al., Run II jet physics, hep-ex/0005012 [INSPIRE].
  42. [42]
    G. Brooijmans, High pT Hadronic Top Quark Identification. Part 1: Jet Mass and YSplitter, ATL-PHYS-CONF-2008-008 (2008) [INSPIRE].
  43. [43]
    J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi, Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].ADSGoogle Scholar
  46. [46]
    CMS collaboration, Performance of b tagging at \( \sqrt{s}=8 \) TeV in multijet, \( t\overline{t} \) and boosted topology events, CMS-PAS-BTV-13-001 (2013) [INSPIRE].
  47. [47]
    ATLAS collaboration, Flavor Tagging with Track Jets in Boosted Topologies with the ATLAS Detector, ATL-PHYS-PUB-2014-013 (2014).
  48. [48]
    D. Curtin, R. Essig and B. Shuve, Boosted Multijet Resonances and New Color-Flow Variables, Phys. Rev. D 88 (2013) 034019 [arXiv:1210.5523] [INSPIRE].ADSGoogle Scholar
  49. [49]
    CMS collaboration, Boosted Top Jet Tagging at CMS, CMS-PAS-JME-13-007 (2014) [INSPIRE].
  50. [50]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Freytsis, T. Volansky and J.R. Walsh, Tagging Partially Reconstructed Objects with Jet Substructure, arXiv:1412.7540 [INSPIRE].
  55. [55]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Krohn, J. Thaler and L.-T. Wang, Jets with Variable R, JHEP 06 (2009) 059 [arXiv:0903.0392] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    B. Nachman, P. Nef, A. Schwartzman, M. Swiatlowski and C. Wanotayaroj, Jets from Jets: Re-clustering as a tool for large radius jet reconstruction and grooming at the LHC, JHEP 02 (2015) 075 [arXiv:1407.2922] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  59. [59]
    D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Salam, E t Scheme, unpublished.Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations