Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–25 | Cite as

Holographic vortices in the presence of dark matter sector

  • Marek RogatkoEmail author
  • Karol I. Wysokinski
Open Access
Regular Article - Theoretical Physics


The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, Ann. Rev. Condensed Matter Phys. 3 (2012) 9 [arXiv:1108.1197] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    A.G. Green, An Introduction to Gauge Gravity Duality and Its Application in Condensed Matter, Contemp. Phys. 54 (2013) 33 [arXiv:1304.5908] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards A Holographic Model of D-Wave Superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].ADSGoogle Scholar
  9. [9]
    F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Rogatko and K.I. Wysokiński, Remarks on the Hall conductivity in chiral superconductors: weak vs. strong coupling approach, Acta Phys. Polon. A 126 (2014) A9.CrossRefGoogle Scholar
  11. [11]
    H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, d-wave Holographic Superconductor Vortex Lattice and Non-Abelian Holographic Superconductor Droplet, Phys. Rev. D 82 (2010) 126008 [arXiv:1007.4151] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G.T. Horowitz and B. Way, Complete Phase Diagrams for a Holographic Superconductor/Insulator System, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped Holographic Superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Aprile, D. Rodriguez-Gomez and J.G. Russo, p-wave Holographic Superconductors and five-dimensional gauged Supergravity, JHEP 01 (2011) 056 [arXiv:1011.2172] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Gangopadhyay and D. Roychowdhury, Analytic study of properties of holographic p-wave superconductors, JHEP 08 (2012) 104 [arXiv:1207.5605] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On Holographic p-wave Superfluids with Back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Liu and Y.-Q. Wang, Holographic model of hybrid and coexisting s-wave and p-wave Josephson junction, Eur. Phys. J. C 75 (2015) 493 [arXiv:1504.06918] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.-G. Cai, L. Li, H.-Q. Zhang and Y.-L. Zhang, Magnetic Field Effect on the Phase Transition in AdS Soliton Spacetime, Phys. Rev. D 84 (2011) 126008 [arXiv:1109.5885] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.-G. Cai, H.-F. Li and H.-Q. Zhang, Analytical Studies on Holographic Insulator/Superconductor Phase Transitions, Phys. Rev. D 83 (2011) 126007 [arXiv:1103.5568] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Akhavan and M. Alishahiha, P-Wave Holographic Insulator/Superconductor Phase Transition, Phys. Rev. D 83 (2011) 086003 [arXiv:1011.6158] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Coexistence of two vector order parameters: a holographic model for ferromagnetic superconductivity, JHEP 01 (2014) 054 [arXiv:1309.5093] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Siopsis and J. Therrien, Analytic Calculation of Properties of Holographic Superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012) 211601 [arXiv:1203.0533] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R.-G. Cai, L. Li, L.-F. Li and R.-Q. Yang, Introduction to Holographic Superconductor Models, Sci. China Phys. Mech. Astron. 58 (2015) 060401 [arXiv:1502.00437] [INSPIRE].Google Scholar
  27. [27]
    Q. Pan, J. Jing and B. Wang, Analytical investigation of the phase transition between holographic insulator and superconductor in Gauss-Bonnet gravity, JHEP 11 (2011) 088 [arXiv:1105.6153] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    H.-F. Li, R.-G. Cai and H.-Q. Zhang, Analytical Studies on Holographic Superconductors in Gauss-Bonnet Gravity, JHEP 04 (2011) 028 [arXiv:1103.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic p-wave superconductors from Gauss-Bonnet gravity, Phys. Rev. D 82 (2010) 066007 [arXiv:1007.3321] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A.B. Pavan, Holographic Superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic Phase Transitions of P-wave Superconductors in Gauss-Bonnet Gravity with Back-reaction, Phys. Rev. D 83 (2011) 066013 [arXiv:1012.5559] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Zhang, Q. Pan and J. Jing, Holographic p-wave superconductor models with Weyl corrections, Phys. Lett. B 743 (2015) 104 [arXiv:1502.05635] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    P. Chaturvedi and G. Sengupta, p-wave Holographic Superconductors from Born-Infeld Black Holes, JHEP 04 (2015) 001 [arXiv:1501.06998] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    Z. Zhao, Q. Pan and J. Jing, Holographic insulator/superconductor phase transition with Weyl corrections, Phys. Lett. B 719 (2013) 440 [arXiv:1212.3062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    J. Jing, Q. Pan and S. Chen, Holographic Superconductor/Insulator Transition with logarithmic electromagnetic field in Gauss-Bonnet gravity, Phys. Lett. B 716 (2012) 385 [arXiv:1209.0893] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    X.-H. Ge and H.-Q. Leng, Analytical calculation on critical magnetic field in holographic superconductors with backreaction, Prog. Theor. Phys. 128 (2012) 1211 [arXiv:1105.4333] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    S.-l. Cui and Z. Xue, Critical magnetic field in a holographic superconductor in Gauss-Bonnet gravity with Born-Infeld electrodynamics, Phys. Rev. D 88 (2013) 107501 [arXiv:1306.2013] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D. Roychowdhury, Effect of external magnetic field on holographic superconductors in presence of nonlinear corrections, Phys. Rev. D 86 (2012) 106009 [arXiv:1211.0904] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Albash and C.V. Johnson, Vortex and Droplet Engineering in Holographic Superconductors, Phys. Rev. D 80 (2009) 126009 [arXiv:0906.1795] [INSPIRE].ADSGoogle Scholar
  46. [46]
    D. Roychowdhury, Holographic droplets in p-wave insulator/superconductor transition, JHEP 05 (2013) 162 [arXiv:1304.6171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    R.-G. Cai, S. He, L. Li and L.-F. Li, A Holographic Study on Vector Condensate Induced by a Magnetic Field, JHEP 12 (2013) 036 [arXiv:1309.2098] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Maeda and T. Okamura, Characteristic length of an AdS/CFT superconductor, Phys. Rev. D 78 (2008) 106006 [arXiv:0809.3079] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, Superconducting Coherence Length and Magnetic Penetration Depth of a p-wave Holographic Superconductor, Phys. Rev. D 81 (2010) 106001 [arXiv:0912.4928] [INSPIRE].ADSGoogle Scholar
  50. [50]
    H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, Characteristic length of a Holographic Superconductor with d-wave gap, Phys. Rev. D 82 (2010) 126014 [arXiv:1006.5483] [INSPIRE].ADSGoogle Scholar
  51. [51]
    D. Roychowdhury, Chern-Simons vortices and holography, JHEP 10 (2014) 18 [arXiv:1407.3464] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    D. Roychowdhury, Towards holographic duals for anomalous supercurrents, arXiv:1403.0085 [INSPIRE].
  53. [53]
    K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [INSPIRE].ADSGoogle Scholar
  54. [54]
    K. Maeda and T. Okamura, Vortex flow for a holographic superconductor, Phys. Rev. D 83 (2011) 066004 [arXiv:1012.0202] [INSPIRE].ADSGoogle Scholar
  55. [55]
    T. Shiromizu, S. Ohashi and R. Suzuki, A no-go on strictly stationary spacetimes in four/higher dimensions, Phys. Rev. D 86 (2012) 064041 [arXiv:1207.7250] [INSPIRE].ADSGoogle Scholar
  56. [56]
    B. Bakon and M. Rogatko, Complex scalar field in strictly stationary Einstein-Maxwell-axion-dilaton spacetime with negative cosmological constant, Phys. Rev. D 87 (2013) 084065 [arXiv:1305.1401] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Regis, J.-Q. Xia, A. Cuoco, E. Branchini, N. Fornengo and M. Viel, Particle dark matter searches outside the Local Group, Phys. Rev. Lett. 114 (2015) 241301 [arXiv:1503.05922] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    Y. Ali-Haimoud, J. Chluba and M. Kamionkowski, Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions, Phys. Rev. Lett. 115 (2015) 071304 [arXiv:1506.04745] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Bramante and T. Linden, Detecting Dark Matter with Imploding Pulsars in the Galactic Center, Phys. Rev. Lett. 113 (2014) 191301 [arXiv:1405.1031] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Fuller and C. Ott, Dark Matter-induced Collapse of Neutron Stars: A Possible Link Between Fast Radio Bursts and the Missing Pulsar Problem, Mon. Not. Roy. Astron. Soc. 450 (2015) L71 [arXiv:1412.6119] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    I. Lopes and J. Silk, A particle dark matter footprint on the first generation of stars, Astrophys. J. 786 (2014) 25 [arXiv:1404.3909] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Nakonieczna, M. Rogatko and R. Moderski, Dynamical Collapse of Charged Scalar Field in Phantom Gravity, Phys. Rev. D 86 (2012) 044043 [arXiv:1209.1203] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Nakonieczna, M. Rogatko and L. Nakonieczny, Dark sector impact on gravitational collapse of an electrically charged scalar field, JHEP 11 (2015) 012 [arXiv:1508.02657] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    A. Geringer-Sameth et al., Indication of Gamma-ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II, Phys. Rev. Lett. 115 (2015) 081101 [arXiv:1503.02320] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K.K. Boddy and J. Kumar, Indirect Detection of Dark Matter Using MeV-Range Gamma-Ray Telescopes, Phys. Rev. D 92 (2015) 023533 [arXiv:1504.04024] [INSPIRE].ADSGoogle Scholar
  66. [66]
    K. Van Tilburg, N. Leefer, L. Bougas and D. Budker, Search for ultralight scalar dark matter with atomic spectroscopy, Phys. Rev. Lett. 115 (2015) 011802 [arXiv:1503.06886] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    P. Jean et al., Early SPI/INTEGRAL measurements of 511 keV line emission from the 4th quadrant of the Galaxy, Astron. Astrophys. 407 (2003) L55 [astro-ph/0309484] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Chang et al., An excess of cosmic ray electrons at energies of 300-800 GeV, Nature 456 (2008) 362 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
  70. [70]
    Muon g-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  71. [71]
    D. Harvey, R. Massey, T. Kitching, A. Taylor and E. Tittley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347 (2015) 1462 [arXiv:1503.07675] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    R. Massey et al., The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827, Mon. Not. Roy. Astron. Soc. 449 (2015) 3393 [arXiv:1504.03388] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    BaBar collaboration, J.P. Lees et al., Search for a Dark Photon in e + e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  74. [74]
    L. Nakonieczny and M. Rogatko, Analytic study on backreacting holographic superconductors with dark matter sector, Phys. Rev. D 90 (2014) 106004 [arXiv:1411.0798] [INSPIRE].ADSGoogle Scholar
  75. [75]
    L. Nakonieczny, M. Rogatko and K.I. Wysokinski, Magnetic field in holographic superconductor with dark matter sector, Phys. Rev. D 91 (2015) 046007 [arXiv:1502.02550] [INSPIRE].ADSGoogle Scholar
  76. [76]
    L. Nakonieczny, M. Rogatko and K.I. Wysokiński, Analytic investigation of holographic phase transitions influenced by dark matter sector, Phys. Rev. D 92 (2015) 066008 [arXiv:1509.01769] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Rogatko and K.I. Wysokinski, P-wave holographic superconductor/insulator phase transitions affected by dark matter sector, arXiv:1508.02869 [INSPIRE].
  78. [78]
    Y. Peng, Holographic entanglement entropy in superconductor phase transition with dark matter sector, Phys. Lett. B 750 (2015) 420 [arXiv:1507.07399] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  79. [79]
    T. Vachaspati and A. Achucarro, Semilocal cosmic strings, Phys. Rev. D 44 (1991) 3067 [INSPIRE].ADSMathSciNetGoogle Scholar
  80. [80]
    A. Achucarro and T. Vachaspati, Semilocal and electroweak strings, Phys. Rept. 327 (2000) 347 [hep-ph/9904229] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    B. Hartmann and F. Arbabzadah, Cosmic strings interacting with dark strings, JHEP 07 (2009) 068 [arXiv:0904.4591] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Y. Brihaye and B. Hartmann, The effect of dark strings on semilocal strings, Phys. Rev. D 80 (2009) 123502 [arXiv:0907.3233] [INSPIRE].ADSMathSciNetGoogle Scholar
  83. [83]
    Y. Brihaye and B. Hartmann, Holographic superfluid/fluid/insulator phase transitions in 2+1 dimensions, Phys. Rev. D 83 (2011) 126008 [arXiv:1101.5708] [INSPIRE].ADSGoogle Scholar
  84. [84]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, ’DarkZ implications for Parity Violation, Rare Meson Decays and Higgs Physics, Phys. Rev. D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].ADSGoogle Scholar
  85. [85]
    H. Davoudiasl, H.-S. Lee, I. Lewis and W.J. Marciano, Higgs Decays as a Window into the Dark Sector, Phys. Rev. D 88 (2013) 015022 [arXiv:1304.4935] [INSPIRE].ADSGoogle Scholar
  86. [86]
    K. Freese, M. Lisanti and C. Savage, Colloquium: Annual modulation of dark matter, Rev. Mod. Phys. 85 (2013) 1561 [arXiv:1209.3339] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    O. Domenech, M. Montull, A. Pomarol, A. Salvio and P.J. Silva, Emergent Gauge Fields in Holographic Superconductors, JHEP 08 (2010) 033 [arXiv:1005.1776] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  88. [88]
    M. Montull, O. Pujolàs, A. Salvio and P.J. Silva, Magnetic Response in the Holographic Insulator/Superconductor Transition, JHEP 04 (2012) 135 [arXiv:1202.0006] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    Ó.J.C. Dias, G.T. Horowitz, N. Iqbal and J.E. Santos, Vortices in holographic superfluids and superconductors as conformal defects, JHEP 04 (2014) 096 [arXiv:1311.3673] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute of PhysicsMaria Curie-Sklodowska UniversityLublinPoland

Personalised recommendations