Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–13 | Cite as

Large N matrix hyperspheres and the gauge-gravity correspondence

  • Mthokozisi Masuku
  • Mbavhalelo Mulokwe
  • João P. Rodrigues
Open Access
Regular Article - Theoretical Physics

Abstract

The large N dynamics of a subsector of d = 0 interacting complex multi matrix systems, which is naturally parametrized by a matrix valued radial coordinate, and which embodies the canonical AdS/CFT relationship between ’t Hooft’s coupling constant and radius, is obtained. Unlike the case of the single complex matrix, for two or more complex matrices a new repulsive logarithmic potential is present, and as a result the density of radial eigenvalues has support on an hyper annulus. For the single complex matrix, the integral over the angular degrees of freedom of the Yang-Mills interaction can be carried out exactly, and in the presence of an harmonic potential, the density of radial eigenvalues is shown to be of the Wigner type.

Keywords

Matrix Models 1/N Expansion AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Masuku and J.P. Rodrigues, Laplacians in polar matrix coordinates and radial fermionization in higher dimensions, J. Math. Phys. 52 (2011) 032302 [arXiv:0911.2846] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Masuku and J.P. Rodrigues, How universal is the Wigner distribution?, J. Phys. A 45 (2012) 085201 [arXiv:1107.3681] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  6. [6]
    R.C. Penner, The moduli space of a punctured surface and perturbative series, Bull. Amer. Math. Soc. 15 (1986) 73.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    R.C. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Diff. Geom. 27 (1988) 35 [INSPIRE]MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457.ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    R. de Mello Koch and J. Murugan, Emergent Spacetime, arXiv:0911.4817 [INSPIRE].
  10. [10]
    G.M. Cicuta, L. Molinari, E. Montaldi and F. Riva, Large rectangular random matrices, J. Math. Phys. 28 (1987) 1716 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Anderson, R.C. Myers and V. Periwal, Complex random surfaces, Phys. Lett. B 254 (1991) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Anderson, R.C. Myers and V. Periwal, Branched polymers from a double scaling limit of matrix models, Nucl. Phys. B 360 (1991) 463 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    R.C. Myers and V. Periwal, Chiral noncritical strings, Nucl. Phys. B 390 (1993) 716 [hep-th/9210082] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Feinberg and A. Zee, Renormalizing rectangles and other topics in random matrix theory, J. Statist. Phys. 87 (1997) 473 [cond-mat/9609190] [INSPIRE].
  15. [15]
    R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [INSPIRE].
  16. [16]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    T. Eguchi and K. Maruyoshi, Penner Type Matrix Model and Seiberg-Witten Theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    R. Schiappa and N. Wyllard, An A(r) threesome: matrix models, 2d CFTs and 4d N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    C.-I. Tan, Generalized Penner models and multicritical behavior, Phys. Rev. D 45 (1992) 2862 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  22. [22]
    R. de Mello Koch and J.P. Rodrigues, The Collective field theory of a singular supersymmetric matrix model, Phys. Rev. D 51 (1995) 5847 [hep-th/9410012] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Masuku, Matrix Polar Coordinates, MSc Thesis, Faculty of Science, University of the Witwatersrand (2009).Google Scholar
  24. [24]
    C. Itzykson and J.B. Zuber, The Planar Approximation. 2., J. Math. Phys. 21 (1980) 411 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M.I. Dobroliubov, Yu. Makeenko and G.W. Semenoff, Correlators of the Kazakov-Migdal model, Mod. Phys. Lett. A 8 (1993) 2387 [hep-th/9306037] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Yu. Makeenko, Some remarks about the two matrix Penner model and the Kazakov-Migdal model, Phys. Lett. B 314 (1993) 197 [hep-th/9306043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A.A. Migdal, Exact solution of induced lattice gauge theory at large-N , Mod. Phys. Lett. A 8 (1993) 359 [hep-lat/9206002] [INSPIRE].
  28. [28]
    V.A. Kazakov and A.A. Migdal, Induced QCD at large-N , Nucl. Phys. B 397 (1993) 214 [hep-th/9206015] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Mulokwe, The Large-N Limit Of Matrix Models And AdS/CFT, MSc Thesis, Faculty of Science, University of the Witwatersrand (2013).Google Scholar
  30. [30]
    J. Hoppe, Quantum Theory of a Massless Relativistic Surface and a Two-Dimensional Bound State Problem, Ph.D. Thesis, Deptartment of Physics, Massachusetts Institute of Technology (1982).Google Scholar
  31. [31]
    V.A. Kazakov, I.K. Kostov and N.A. Nekrasov, D particles, matrix integrals and KP hierarchy, Nucl. Phys. B 557 (1999) 413 [hep-th/9810035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    D.E. Berenstein, M. Hanada and S.A. Hartnoll, Multi-matrix models and emergent geometry, JHEP 02 (2009) 010 [arXiv:0805.4658] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Mthokozisi Masuku
    • 1
  • Mbavhalelo Mulokwe
    • 1
  • João P. Rodrigues
    • 1
  1. 1.National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations