Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–13 | Cite as

Large N matrix hyperspheres and the gauge-gravity correspondence

  • Mthokozisi Masuku
  • Mbavhalelo Mulokwe
  • João P. Rodrigues
Open Access
Regular Article - Theoretical Physics


The large N dynamics of a subsector of d = 0 interacting complex multi matrix systems, which is naturally parametrized by a matrix valued radial coordinate, and which embodies the canonical AdS/CFT relationship between ’t Hooft’s coupling constant and radius, is obtained. Unlike the case of the single complex matrix, for two or more complex matrices a new repulsive logarithmic potential is present, and as a result the density of radial eigenvalues has support on an hyper annulus. For the single complex matrix, the integral over the angular degrees of freedom of the Yang-Mills interaction can be carried out exactly, and in the presence of an harmonic potential, the density of radial eigenvalues is shown to be of the Wigner type.


Matrix Models 1/N Expansion AdS-CFT Correspondence 


  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Masuku and J.P. Rodrigues, Laplacians in polar matrix coordinates and radial fermionization in higher dimensions, J. Math. Phys. 52 (2011) 032302 [arXiv:0911.2846] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Masuku and J.P. Rodrigues, How universal is the Wigner distribution?, J. Phys. A 45 (2012) 085201 [arXiv:1107.3681] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  6. [6]
    R.C. Penner, The moduli space of a punctured surface and perturbative series, Bull. Amer. Math. Soc. 15 (1986) 73.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    R.C. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Diff. Geom. 27 (1988) 35 [INSPIRE]MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457.ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    R. de Mello Koch and J. Murugan, Emergent Spacetime, arXiv:0911.4817 [INSPIRE].
  10. [10]
    G.M. Cicuta, L. Molinari, E. Montaldi and F. Riva, Large rectangular random matrices, J. Math. Phys. 28 (1987) 1716 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Anderson, R.C. Myers and V. Periwal, Complex random surfaces, Phys. Lett. B 254 (1991) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Anderson, R.C. Myers and V. Periwal, Branched polymers from a double scaling limit of matrix models, Nucl. Phys. B 360 (1991) 463 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    R.C. Myers and V. Periwal, Chiral noncritical strings, Nucl. Phys. B 390 (1993) 716 [hep-th/9210082] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Feinberg and A. Zee, Renormalizing rectangles and other topics in random matrix theory, J. Statist. Phys. 87 (1997) 473 [cond-mat/9609190] [INSPIRE].
  15. [15]
    R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [INSPIRE].
  16. [16]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    T. Eguchi and K. Maruyoshi, Penner Type Matrix Model and Seiberg-Witten Theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    R. Schiappa and N. Wyllard, An A(r) threesome: matrix models, 2d CFTs and 4d N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    C.-I. Tan, Generalized Penner models and multicritical behavior, Phys. Rev. D 45 (1992) 2862 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  22. [22]
    R. de Mello Koch and J.P. Rodrigues, The Collective field theory of a singular supersymmetric matrix model, Phys. Rev. D 51 (1995) 5847 [hep-th/9410012] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Masuku, Matrix Polar Coordinates, MSc Thesis, Faculty of Science, University of the Witwatersrand (2009).Google Scholar
  24. [24]
    C. Itzykson and J.B. Zuber, The Planar Approximation. 2., J. Math. Phys. 21 (1980) 411 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M.I. Dobroliubov, Yu. Makeenko and G.W. Semenoff, Correlators of the Kazakov-Migdal model, Mod. Phys. Lett. A 8 (1993) 2387 [hep-th/9306037] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Yu. Makeenko, Some remarks about the two matrix Penner model and the Kazakov-Migdal model, Phys. Lett. B 314 (1993) 197 [hep-th/9306043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A.A. Migdal, Exact solution of induced lattice gauge theory at large-N , Mod. Phys. Lett. A 8 (1993) 359 [hep-lat/9206002] [INSPIRE].
  28. [28]
    V.A. Kazakov and A.A. Migdal, Induced QCD at large-N , Nucl. Phys. B 397 (1993) 214 [hep-th/9206015] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Mulokwe, The Large-N Limit Of Matrix Models And AdS/CFT, MSc Thesis, Faculty of Science, University of the Witwatersrand (2013).Google Scholar
  30. [30]
    J. Hoppe, Quantum Theory of a Massless Relativistic Surface and a Two-Dimensional Bound State Problem, Ph.D. Thesis, Deptartment of Physics, Massachusetts Institute of Technology (1982).Google Scholar
  31. [31]
    V.A. Kazakov, I.K. Kostov and N.A. Nekrasov, D particles, matrix integrals and KP hierarchy, Nucl. Phys. B 557 (1999) 413 [hep-th/9810035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    D.E. Berenstein, M. Hanada and S.A. Hartnoll, Multi-matrix models and emergent geometry, JHEP 02 (2009) 010 [arXiv:0805.4658] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Mthokozisi Masuku
    • 1
  • Mbavhalelo Mulokwe
    • 1
  • João P. Rodrigues
    • 1
  1. 1.National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations