Advertisement

Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–27 | Cite as

Gravitating BPS Skyrmions

  • Sven Bjarke Gudnason
  • Muneto Nitta
  • Nobuyuki Sawado
Open Access
Regular Article - Theoretical Physics

Abstract

The BPS Skyrme model has many exact analytic solutions in flat space. We generalize the model to a curved space or spacetime and find that the solutions can only be BPS for a constant time-time component of the metric tensor. We find exact solutions on the curved spaces: a 3-sphere and a 3-hyperboloid; and we further find an analytic gravitating Skyrmion on the 3-sphere. For the case of a nontrivial time-time component of the metric, we suggest a potential for which we find analytic solutions on anti-de Sitter and de Sitter spacetimes in the limit of no gravitational backreaction. We take the gravitational coupling into account in numerical solutions and show that they are well approximated by the analytic solutions for weak gravitational coupling.

Keywords

Integrable Equations in Physics Solitons Monopoles and Instantons Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T.H.R. Skyrme, A Unified Field Theory of Mesons and Baryons, Nucl. Phys. 31 (1962) 556 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    T.H.R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Current Algebra, Baryons and Quark Confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    H. Lückock and I. Moss, Black holes have Skyrmion hair, Phys. Lett. B 176 (1986) 341 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Droz, M. Heusler and N. Straumann, New black hole solutions with hair, Phys. Lett. B 268 (1991) 371 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Heusler, S. Droz and N. Straumann, Stability analysis of selfgravitating skyrmions, Phys. Lett. B 271 (1991) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Heusler, S. Droz and N. Straumann, Linear stability of Einstein Skyrme black holes, Phys. Lett. B 285 (1992) 21 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Bizon and T. Chmaj, Gravitating skyrmions, Phys. Lett. B 297 (1992) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N.K. Glendenning, T. Kodama and F.R. Klinkhamer, Skyrme topological soliton coupled to gravity, Phys. Rev. D 38 (1988) 3226 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.S. Volkov and D.V. Gal’tsov, Gravitating nonAbelian solitons and black holes with Yang-Mills fields, Phys. Rept. 319 (1999) 1 [hep-th/9810070] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Shiiki and N. Sawado, Black hole skyrmions with negative cosmological constant, Phys. Rev. D 71 (2005) 104031 [gr-qc/0502107] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    N. Shiiki and N. Sawado, Regular and black hole solutions in the Einstein-Skyrme theory with negative cosmological constant, Class. Quant. Grav. 22 (2005) 3561 [gr-qc/0503123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Y. Brihaye and T. Delsate, Skyrmion and Skyrme-black holes in de Sitter spacetime, Mod. Phys. Lett. A 21 (2006) 2043 [hep-th/0512339] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    S. Zajac, Late-time evolution of the gravitating Skyrmion, Acta Phys. Polon. B 40 (2009) 1617 [arXiv:0906.4322] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Zajac, Late-time tails of self-gravitating skyrmions, Acta Phys. Polon. B 42 (2011) 249 [arXiv:1001.4818] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    Ya. Shnir, Gravitating sphalerons in the Skyrme model, Phys. Rev. D 92 (2015) 085039 [arXiv:1508.06507] [INSPIRE].
  18. [18]
    B.M. A.G. Piette and G.I. Probert, Towards skyrmion stars: Large baryon configurations in the Einstein-Skyrme model, Phys. Rev. D 75 (2007) 125023 [arXiv:0704.0527] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Nelmes and B.M. A.G. Piette, Skyrmion stars and the multilayered rational map ansatz, Phys. Rev. D 84 (2011) 085017 [INSPIRE].ADSGoogle Scholar
  20. [20]
    S.G. Nelmes and B.M. A.G. Piette, Phase Transition and Anisotropic Deformations of Neutron Star Matter, Phys. Rev. D 85 (2012) 123004 [arXiv:1204.0910] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N.S. Manton and P.J. Ruback, Skyrmions in Flat Space and Curved Space, Phys. Lett. B 181 (1986) 137 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Witten, Some Exact Multi-Instanton Solutions of Classical Yang-Mills Theory, Phys. Rev. Lett. 38 (1977) 121 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Elliot-Ripley and T. Winyard, Baby Skyrmions in AdS, JHEP 09 (2015) 009 [arXiv:1507.05928] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Bolognesi and D. Tong, Monopoles and Holography, JHEP 01 (2011) 153 [arXiv:1010.4178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P. Sutcliffe, Monopoles in AdS, JHEP 08 (2011) 032 [arXiv:1104.1888] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Y. Yang, An equivalence theorem for string solutions of the Einstein matter gauge equations, Lett. Math. Phys. 26 (1992) 79 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    L. Álvarez Cónsul, M. Garcia-Fernandez and O. García-Prada, Gravitating vortices, cosmic strings and the Kähler-Yang-Mills equations, arXiv:1510.03810 [INSPIRE].
  28. [28]
    G.W. Gibbons, M.E. Ortiz, F. Ruiz Ruiz and T.M. Samols, Semilocal strings and monopoles, Nucl. Phys. B 385 (1992) 127 [hep-th/9203023] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L.G. Aldrovandi, Strings in Yang-Mills-Higgs theory coupled to gravity, Phys. Rev. D 76 (2007) 085015 [arXiv:0706.0446] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    P. Sutcliffe, Skyrmions, instantons and holography, JHEP 08 (2010) 019 [arXiv:1003.0023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large-N c, Phys. Rev. D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Harland, Topological energy bounds for the Skyrme and Faddeev models with massive pions, Phys. Lett. B 728 (2014) 518 [arXiv:1311.2403] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Adam and A. Wereszczynski, Topological energy bounds in generalized Skyrme models, Phys. Rev. D 89 (2014) 065010 [arXiv:1311.2939] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Gillard, D. Harland and M. Speight, Skyrmions with low binding energies, Nucl. Phys. B 895 (2015) 272 [arXiv:1501.05455] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, BPS Skyrmions as neutron stars, Phys. Lett. B 742 (2015) 136 [arXiv:1407.3799] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, Neutron stars in the Bogomolnyi-Prasad-Sommerfield Skyrme model: Mean-field limit versus full field theory, Phys. Rev. C 92 (2015) 025802 [arXiv:1503.03095] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Adam, C. Naya, J. Sanchez-Guillen, J.M. Speight and A. Wereszczynski, Thermodynamics of the BPS Skyrme model, Phys. Rev. D 90 (2014) 045003 [arXiv:1405.2927] [INSPIRE].ADSGoogle Scholar
  39. [39]
    B.M. A.G. Piette and W.J. Zakrzewski, Skyrmions and domain walls, hep-th/9710011 [INSPIRE].
  40. [40]
    A.E. Kudryavtsev, B.M. A.G. Piette and W.J. Zakrzewski, On the interactions of skyrmions with domain walls, Phys. Rev. D 61 (2000) 025016 [hep-th/9907197] [INSPIRE].ADSGoogle Scholar
  41. [41]
    V.B. Kopeliovich, B. Piette and W.J. Zakrzewski, Mass terms in the Skyrme model, Phys. Rev. D 73 (2006) 014006 [hep-th/0503127] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Nitta, Correspondence between Skyrmions in 2+1 and 3+1 Dimensions, Phys. Rev. D 87 (2013) 025013 [arXiv:1210.2233] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Nitta, Matryoshka Skyrmions, Nucl. Phys. B 872 (2013) 62 [arXiv:1211.4916] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    S.B. Gudnason and M. Nitta, Baryonic sphere: a spherical domain wall carrying baryon number, Phys. Rev. D 89 (2014) 025012 [arXiv:1311.4454] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S.B. Gudnason and M. Nitta, Domain wall Skyrmions, Phys. Rev. D 89 (2014) 085022 [arXiv:1403.1245] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S.B. Gudnason and M. Nitta, Effective field theories on solitons of generic shapes, Phys. Lett. B 747 (2015) 173 [arXiv:1407.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S.B. Gudnason and M. Nitta, Incarnations of Skyrmions, Phys. Rev. D 90 (2014) 085007 [arXiv:1407.7210] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Bazeia, L. Losano, R. Menezes and J.C.R.E. Oliveira, Generalized Global Defect Solutions, Eur. Phys. J. C 51 (2007) 953 [hep-th/0702052] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    N.S. Manton and T.M. Samols, Skyrmions on S 3 and H 3 From Instantons, J. Phys. A 23 (1990) 3749 [INSPIRE].ADSzbMATHGoogle Scholar
  50. [50]
    M. Atiyah and P. Sutcliffe, Skyrmions, instantons, mass and curvature, Phys. Lett. B 605 (2005) 106 [hep-th/0411052] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Winyard, Hyperbolic Skyrmions, arXiv:1503.08522 [INSPIRE].
  52. [52]
    E. Ayon-Beato, F. Canfora and J. Zanelli, Analytic self-gravitating Skyrmions, cosmological bounces and wormholes, arXiv:1509.02659 [INSPIRE].
  53. [53]
    C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, The vector BPS baby Skyrme model, Phys. Rev. D 86 (2012) 045015 [arXiv:1207.0517] [INSPIRE].ADSGoogle Scholar
  54. [54]
    H. Nariai, On some static solutions of Einsteins gravitational field equations in a spherically symmetric case, Sci. Rep. Tohoku Univ. 34 (1950) 160.ADSMathSciNetGoogle Scholar
  55. [55]
    N. Shiiki and N. Sawado, Black holes with skyrme hair, gr-qc/0501025 [INSPIRE].
  56. [56]
    P. Bizon and T. Chmaj, Critical collapse of Skyrmions, Phys. Rev. D 58 (1998) 041501 [gr-qc/9801012] [INSPIRE].ADSGoogle Scholar
  57. [57]
    V.B. Kopeliovich and B.E. Stern, Exotic Skyrmions, JETP Lett. 45 (1987) 203 [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    N.S. Manton, Is the B = 2 Skyrmion Axially Symmetric?, Phys. Lett. B 192 (1987) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J.J.M. Verbaarschot, Axial Symmetry of Bound Baryon Number Two Solution of the Skyrme Model, Phys. Lett. B 195 (1987) 235 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    N. Sawado, N. Shiiki, K.-i. Maeda and T. Torii, Regular and black hole Skyrmions with axisymmetry, Gen. Rel. Grav. 36 (2004) 1361 [gr-qc/0401020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    H. Sato, N. Sawado and N. Shiiki, Collective quantization of axially symmetric gravitating B = 2 skyrmion,Phys. Rev. D 75 (2007) 014011 [hep-th/0609196] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Sven Bjarke Gudnason
    • 1
  • Muneto Nitta
    • 2
  • Nobuyuki Sawado
    • 3
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Department of Physics, and Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan
  3. 3.Department of PhysicsTokyo University of ScienceNodaJapan

Personalised recommendations