Advertisement

Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–19 | Cite as

Thermodynamics of QCD from Sakai-Sugimoto model

  • Hiroshi Isono
  • Gautam Mandal
  • Takeshi MoritaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Till date, the only consistent description of the deconfinement phase of the Sakai-Sugimoto model appears to be provided by the analysis of [1]. The current version of the analysis, however, has a subtlety regarding the monodromy of quarks around the Euclidean time circle. In this note, we revisit and resolve this issue by considering the effect of an imaginary baryon chemical potential on quark monodromies. With this ingredient, the proposal of [1] for investigating finite temperature QCD using holography is firmly established. Additionally, our technique allows a holographic computation of the free energy as a function of the imaginary chemical potential in the deconfinement phase; we show that our result agrees with the corresponding formula obtained from perturbative QCD, namely the Roberge-Weiss potential.

Keywords

Gauge-gravity correspondence Holography and quark-gluon plasmas Phase Diagram of QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Mandal and T. Morita, Gregory-Laflamme as the confinement/deconfinement transition in holographic QCD, JHEP 09 (2011) 073 [arXiv:1107.4048] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  5. [5]
    Y. Kim, I.J. Shin and T. Tsukioka, Holographic QCD: past, present and future, Prog. Part. Nucl. Phys. 68 (2013) 55 [arXiv:1205.4852] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Rebhan, The Witten-Sakai-Sugimoto model: a brief review and some recent results, EPJ Web Conf. 95 (2015) 02005 [arXiv:1410.8858] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    K.-Y. Kim, S.-J. Sin and I. Zahed, Dense hadronic matter in holographic QCD, J. Korean Phys. Soc. 63 (2013) 1515 [hep-th/0608046] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical potential, JHEP 01 (2007) 072 [hep-th/0608198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S.-J. Sin, Gravity back-reaction to the baryon density for bulk filling branes, JHEP 10 (2007) 078 [arXiv:0707.2719] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Yamada, Sakai-Sugimoto model at high density, JHEP 10 (2008) 020 [arXiv:0707.0101] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    O. Bergman, G. Lifschytz and M. Lippert, Holographic Nuclear Physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold nuclear matter in holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large-N gauge theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Gocksch and F. Neri, On large-n QCD at finite temperature, Phys. Rev. Lett. 50 (1983) 1099 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Dasgupta, C. Gale, M. Mia, M. Richard and O. Trottier, Infrared dynamics of a large-N QCD model, the massless string sector and mesonic spectra, JHEP 07 (2015) 122 [arXiv:1409.0559] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Chen, L. Chen, K. Dasgupta, M. Mia and O. Trottier, Ultraviolet complete model of large-N thermal QCD, Phys. Rev. D 87 (2013) 041901 [arXiv:1209.6061] [INSPIRE].ADSGoogle Scholar
  19. [19]
    T. Azuma, T. Morita and S. Takeuchi, Hagedorn instability in dimensionally reduced large-N gauge theories as Gregory-Laflamme and Rayleigh-Plateau instabilities, Phys. Rev. Lett. 113 (2014) 091603 [arXiv:1403.7764] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Morita, S. Shiba, T. Wiseman and B. Withers, Moduli dynamics as a predictive tool for thermal maximally supersymmetric Yang-Mills at large-N , JHEP 07 (2015) 047 [arXiv:1412.3939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Hanada, Y. Matsuo and T. Morita, Instanton dynamics in finite temperature QCD via holography, Nucl. Phys. B 899 (2015) 631 [arXiv:1505.04498] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Roberge and N. Weiss, Gauge theories with imaginary chemical potential and the phases of QCD, Nucl. Phys. B 275 (1986) 734 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Kashiwa and A. Ohnishi, Topological feature and phase structure of QCD at complex chemical potential, Phys. Lett. B 750 (2015) 282 [arXiv:1505.06799] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    A.M. Polyakov, Gauge fields and strings, Contemporary Concepts in Physics volume 3, CRC Press, U.S.A. (1987).Google Scholar
  26. [26]
    R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J. Rafferty, Holographic Roberge Weiss transitions IIDefect theories and the Sakai-Sugimoto model, JHEP 09 (2011) 087 [arXiv:1103.2315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    O. Aharony and E. Witten, Anti-de Sitter space and the center of the gauge group, JHEP 11 (1998) 018 [hep-th/9807205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. Witten, AdS/CFT correspondence and topological field theory, JHEP 12 (1998) 012 [hep-th/9812012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds, JHEP 10 (2001) 005 [hep-th/0108152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    H.-U. Yee, Fate of Z(N ) domain wall in hot holographic QCD, JHEP 04 (2009) 029 [arXiv:0901.0705] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.R. Coleman, More about the massive Schwinger model, Annals Phys. 101 (1976) 239 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Witten, θ vacua in two-dimensional quantum chromodynamics, Nuovo Cim. A 51 (1979) 325 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Department of Physics, Particle Physics Research Laboratory, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  4. 4.Department of PhysicsShizuoka UniversityShizuokaJapan

Personalised recommendations