Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–19 | Cite as

Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons

Open Access
Regular Article - Theoretical Physics

Abstract

A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d = 2m + 2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.

Keywords

Classical Theories of Gravity Black Holes 

References

  1. [1]
    A. Komar, Covariant conservation laws in general relativity, Phys. Rev. 113 (1959) 934 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys. 9 (1968) 598 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Penrose, Quasilocal mass and angular momentum in general relativity, Proc. Roy. Soc. Lond. A 381 (1982) 53 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A.J. Dougan and L.J. Mason, Quasilocal mass constructions with positive energy, Phys. Rev. Lett. 67 (1991) 2119 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Ludvigsen and J.A.G. Vickers, The positivity of the Bondi mass, J. Phys. A 14 (1981) L389 [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    R. Kulkarni, V. Chellathurai and N. Dadhich, The effective mass of the Kerr spacetime, Class. Quant. Grav 5 (1988) 1443.ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    G. Bergqvist, Quasilocal mass for event horizons, Class. Quant. Grav. 9 (1992) 1753.ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    N. Dadhich, On the Schwarzschild field, gr-qc/9704068 [INSPIRE].
  10. [10]
    N. Dadhich, Black hole: equipartition of matter and potential energy, Curr. Sci. 76 (1999) 831 [gr-qc/9705037] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Bose and N. Dadhich, On the Brown-York quasilocal energy, gravitational charge and black hole horizons, Phys. Rev. D 60 (1999) 064010 [gr-qc/9906063] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    S. Bose and T.Z. Naing, Quasilocal energy for rotating charged black hole solutions in general relativity and string theory, Phys. Rev. D 60 (1999) 104027 [hep-th/9911070] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    T. Padmanabhan, Gravitation: foundations and frontiers, Cambridge University Press, Cambridge U.K. (2010).CrossRefMATHGoogle Scholar
  14. [14]
    T. Padmanabhan and D. Kothawala, Lanczos-Lovelock models of gravity, Phys. Rept. 531 (2013) 115 [arXiv:1302.2151] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    N. Dadhich, J.M. Pons and K. Prabhu, On the static Lovelock black holes, Gen. Rel. Grav. 45 (2013) 1131 [arXiv:1201.4994] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J.M. Pons and N. Dadhich, On static black holes solutions in Einstein and Einstein-Gauss-Bonnet gravity with topology S n × S n, Eur. Phys. J. C 75 (2015) 280 [arXiv:1408.6754] [INSPIRE].ADSGoogle Scholar
  17. [17]
    N. Dadhich and J.M. Pons, Static pure Lovelock black hole solutions with horizon topology S (n) × S (n), JHEP 05 (2015) 067 [arXiv:1503.00974] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N. Dadhich, Characterization of the Lovelock gravity by Bianchi derivative, Pramana 74 (2010) 875 [arXiv:0802.3034] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Dadhich, A discerning gravitational property for gravitational equation in higher dimensions, arXiv:1506.08764 [INSPIRE].
  20. [20]
    N. Dadhich, S.G. Ghosh and S. Jhingan, The Lovelock gravity in the critical spacetime dimension, Phys. Lett. B 711 (2012) 196 [arXiv:1202.4575] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    N. Dadhich, The gravitational equation in higher dimensions, Springer Proc. Phys. 157 (2014) 43 [arXiv:1210.3022] [INSPIRE].CrossRefMATHGoogle Scholar
  22. [22]
    A. Yale and T. Padmanabhan, Structure of Lanczos-Lovelock Lagrangians in critical dimensions, Gen. Rel. Grav. 43 (2011) 1549 [arXiv:1008.5154] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    T. Padmanabhan, Thermodynamical aspects of gravity: new insights, Rept. Prog. Phys. 73 (2010) 046901 [arXiv:0911.5004] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Padmanabhan, General relativity from a thermodynamic perspective, Gen. Rel. Grav. 46 (2014) 1673 [arXiv:1312.3253] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S. Chakraborty and T. Padmanabhan, Evolution of spacetime arises due to the departure from holographic equipartition in all Lanczos-Lovelock theories of gravity, Phys. Rev. D 90 (2014) 124017 [arXiv:1408.4679] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Chakraborty and T. Padmanabhan, Geometrical variables with direct thermodynamic significance in Lanczos-Lovelock gravity, Phys. Rev. D 90 (2014) 084021 [arXiv:1408.4791] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Chakraborty, Lanczos-Lovelock gravity from a thermodynamic perspective, JHEP 08 (2015) 029 [arXiv:1505.07272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Chakraborty and T. Padmanabhan, Thermodynamical interpretation of the geometrical variables associated with null surfaces, Phys. Rev. D 92 (2015) 104011 [arXiv:1508.04060] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    E. Poisson, A relativists toolkit: the mathematics of black-hole mechanics, 1st ed., Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  31. [31]
    Y. Shi and L.-F. Tam, Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Diff. Geom. 62 (2002) 79 [math/0301047].MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    X.-Q. Fan, Y. Shi and L.-F. Tam, Large-sphere and small-sphere limits of the Brown-York mass, Commun. Anal. Geom. 17 (2009) 37 [arXiv:0711.2552].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    N.O. Murchadha, R.-S. Tung, N. Xie and E. Malec, The Brown-York mass and the Thorne hoop conjecture, Phys. Rev. Lett. 104 (2010) 041101 [arXiv:0912.4001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    E. Malec and N. Xie, Brown-York mass and the hoop conjecture in nonspherical massive systems, Phys. Rev. D 91 (2015) 081501 [arXiv:1503.01354] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Chakraborty and S. Chakraborty, Trajectory around a spherically symmetric non-rotating black hole, Can. J. Phys. 89 (2011) 689 [arXiv:1109.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Chakraborty, Aspects of neutrino oscillation in alternative gravity theories, JCAP 10 (2015) 019 [arXiv:1506.02647] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Chakraborty and S. SenGupta, Solar system constraints on alternative gravity theories, Phys. Rev. D 89 (2014) 026003 [arXiv:1208.1433] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D. Kastor, Komar integrals in higher (and lower) derivative gravity, Class. Quant. Grav. 25 (2008) 175007 [arXiv:0804.1832] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    G. Kofinas and R. Olea, Universal regularization prescription for Lovelock AdS gravity, JHEP 11 (2007) 069 [arXiv:0708.0782] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    O. Mišković and R. Olea, Counterterms in dimensionally continued AdS gravity, JHEP 10 (2007) 028 [arXiv:0706.4460] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    C. Barrabes and W. Israel, Lagrangian brane dynamics in general relativity and Einstein-Gauss-Bonnet gravity, Phys. Rev. D 71 (2005) 064008 [gr-qc/0502108] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    Y. Brihaye and E. Radu, Black hole solutions in D = 5 Chern-Simons gravity, JHEP 11 (2013) 049 [arXiv:1305.3531] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    Y. Brihaye, B. Kleihaus, J. Kunz and E. Radu, Rotating black holes with equal-magnitude angular momenta in D = 5 Einstein-Gauss-Bonnet theory, JHEP 11 (2010) 098 [arXiv:1010.0860] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    J. Crisostomo, R. Troncoso and J. Zanelli, Black hole scan, Phys. Rev. D 62 (2000) 084013 [hep-th/0003271] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    S. Deser and B. Tekin, Gravitational energy in quadratic curvature gravities, Phys. Rev. Lett. 89 (2002) 101101 [hep-th/0205318] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    A. Baykal, Energy definition for quadratic curvature gravities, Phys. Rev. D 86 (2012) 127501 [arXiv:1212.0432] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Barriola and A. Vilenkin, Gravitational field of a global monopole, Phys. Rev. Lett. 63 (1989) 341 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.T. Wheeler, Symmetric solutions to the Gauss-Bonnet extended Einstein equations, Nucl. Phys. B 268 (1986) 737 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.IUCAAPuneIndia
  2. 2.Center for Theoretical Physics, Jamia Millia IslamiaNew DelhiIndia

Personalised recommendations