Journal of High Energy Physics

, 2014:153 | Cite as

Fermion pairing and the scalar boson of the 2D conformal anomaly

  • Daniel N. Blaschke
  • Raúl Carballo-Rubio
  • Emil Mottola
Open Access
Regular Article - Theoretical Physics


We analyze the phenomenon of fermion pairing into an effective boson associated with anomalies and the anomalous commutators of currents, bilinear in the fermion fields. In two spacetime dimensions the chiral bosonization of the Schwinger model is determined by the chiral current anomaly of massless Dirac fermions. A similar bosonized description applies to the 2D conformal trace anomaly of the fermion stress-energy tensor. For both the chiral and conformal anomalies, correlation functions involving anomalous currents, j 5 μ or T μν of massless fermions exhibit a massless boson 1/k 2 pole, and the associated spectral functions obey a UV finite sum rule, becoming δ-functions in the massless limit. In both cases the corresponding effective action of the anomaly is non-local, but may be expressed in a local form by the introduction of a new bosonic field, which becomes a bona fide propagating quantum field in its own right. In both cases this is expressed in Fock space by the anomalous Schwinger commutators of currents becoming the canonical commutation relations of the corresponding boson. The boson has a Fock space operator realization as a coherent superposition of massless fermion pairs, which saturates the intermediate state sums in quantum correlation functions of fermion currents. The Casimir energy of fermions on a finite spatial interval [0, L] can also be described as a coherent scalar condensation of pairs, and the one-loop correlation function of any number n of fermion stress-energy tensors 〈TT . . . T 〉 may be expressed as a combinatoric sum of n!/2 linear tree diagrams of the scalar boson.


2D Gravity Anomalies in Field and String Theories Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.J. Leggett, Quantum liquids: Bose condensation and Cooper pairing in condensed-matter systems, Oxford graduate texts in mathematics, Oxford University Press, Oxford U.K. (2006).Google Scholar
  2. [2]
    P.C.W. Davies, S.A. Fulling and W.G. Unruh, Energy momentum tensor near an evaporating black hole, Phys. Rev. D 13 (1976) 2720 [INSPIRE].ADSGoogle Scholar
  3. [3]
    L.S. Brown, Stress tensor trace anomaly in a gravitational metric: scalar fields, Phys. Rev. D 15 (1977) 1469 [INSPIRE].ADSGoogle Scholar
  4. [4]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge U.K. (1982).Google Scholar
  5. [5]
    J.S. Schwinger, Gauge invariance and mass, Phys. Rev. 125 (1962) 397 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    J.S. Schwinger, Gauge invariance and mass. 2, Phys. Rev. 128 (1962) 2425 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    L.S. Brown, Gauge invariance and mass in a two-dimensional model, Nuovo Cim. 29 (1963) 617.CrossRefGoogle Scholar
  8. [8]
    J.H. Lowenstein and J.A. Swieca, Quantum electrodynamics in two-dimensions, Annals Phys. 68 (1971) 172 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Casher, J.B. Kogut and L. Susskind, Vacuum polarization and the absence of free quarks, Phys. Rev. D 10 (1974) 732 [INSPIRE].ADSGoogle Scholar
  10. [10]
    M.B. Halpern, Equivalent-boson method and free currents in two-dimensional gauge theories, Phys. Rev. D 13 (1976) 337 [INSPIRE].ADSGoogle Scholar
  11. [11]
    N.S. Manton, The Schwinger model and its axial anomaly, Annals Phys. 159 (1985) 220 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    D. Wolf and J. Zittartz, Physics of the Schwinger model, Z. Phys. B 59 (1985) 117.ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    J.E. Hetrick and Y. Hosotani, QED on a circle, Phys. Rev. D 38 (1988) 2621 [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    R. Link, Eigenstates of the Schwinger model Hamiltonian, Phys. Rev. D 42 (1990) 2103 [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    I. Sachs and A. Wipf, Finite temperature Schwinger model, Helv. Phys. Acta 65 (1992) 652 [arXiv:1005.1822] [INSPIRE].MathSciNetGoogle Scholar
  16. [16]
    A.V. Smilga, On the fermion condensate in Schwinger model, Phys. Lett. B 278 (1992) 371 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Dürr and A. Wipf, Finite temperature Schwinger model with chirality breaking boundary conditions, Annals Phys. 255 (1997) 333 [hep-th/9610241] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Hosotani and R. Rodriguez, Bosonized massive N flavor Schwinger model, J. Phys. A 31 (1998) 9925 [hep-th/9804205] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    S. Azakov, The Schwinger model on a circle: relation between path integral and Hamiltonian approaches, Int. J. Mod. Phys. A 21 (2006) 6593 [hep-th/0511116] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    A.D. Dolgov and V.I. Zakharov, On conservation of the axial current in massless electrodynamics, Nucl. Phys. B 27 (1971) 525 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Horejsi, Ultraviolet and infrared aspects of the axial anomaly II, Czech. J. Phys. 42 (1992) 345 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Giannotti and E. Mottola, The trace anomaly and massless scalar degrees of freedom in gravity, Phys. Rev. D 79 (2009) 045014 [arXiv:0812.0351] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Armillis, C. Corianò and L. Delle Rose, Anomaly poles as common signatures of chiral and conformal anomalies, Phys. Lett. B 682 (2009) 322 [arXiv:0909.4522] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.S. Schwinger, Field theory commutators, Phys. Rev. Lett. 3 (1959) 296 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    B. Klaiber, The Thirring model in Boulder 1967, Lectures in theoretical physics vol. XaQuantum Theory and Statistical Physics, New York U.S.A. (1968), pg. 141 [INSPIRE].
  27. [27]
    S.R. Coleman, The quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975) 2088 [INSPIRE].ADSGoogle Scholar
  28. [28]
    S.R. Coleman, R. Jackiw and L. Susskind, Charge shielding and quark confinement in the massive Schwinger model, Annals Phys. 93 (1975) 267 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Witten, Instantons, the quark model and the 1/n expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    S. Azakov, H. Joos and A. Wipf, Witten-Veneziano relation for the Schwinger model, Phys. Lett. B 479 (2000) 245 [hep-th/0002197] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    K. Johnson, γ5 invariance, Phys. Lett. 5 (1963) 253 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. Nakahara, Geometry, topology and physics, second edition, Graduate student series in physics, Institute of Physics Publishing, Bristol U.K. (2003) [INSPIRE].
  34. [34]
    R. Jackiw, Topological investigations of quantized gauge theories, in Relativity, groups and topology, vol. II, B. DeWitt and R. Stora eds., North-Holland, Amsterdam The Netherlands (1983) [INSPIRE].
  35. [35]
    C.P. Burgess and F. Quevedo, Bosonization as duality, Nucl. Phys. B 421 (1994) 373 [hep-th/9401105] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Fujikawa, Path integral for gauge theories with fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].
  38. [38]
    K. Fujikawa and H. Suzuki, Anomalies, local counter terms and bosonization, Phys. Rept. 398 (2004) 221 [hep-th/0305008] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    R.A. Bertlmann, Anomalies in quantum field theory, International series of monographs on physics 91, Clarendon, Oxford U.K. (1996) [INSPIRE].
  40. [40]
    S.R. Coleman, More about the massive Schwinger model, Annals Phys. 101 (1976) 239 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Mottola, Functional integration over geometries, J. Math. Phys. 36 (1995) 2470 [hep-th/9502109] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  42. [42]
    J.E. Hetrick, Y. Hosotani and S. Iso, The massive multi-flavor Schwinger model, Phys. Lett. B 350 (1995) 92 [hep-th/9502113] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.E. Hetrick, Y. Hosotani and S. Iso, The interplay between mass, volume, vacuum angle and chiral condensate in N flavor QED in two-dimensions, Phys. Rev. D 53 (1996) 7255 [hep-th/9510090] [INSPIRE].ADSGoogle Scholar
  44. [44]
    E.C.G. Stueckelberg, Interaction forces in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 299 [INSPIRE].Google Scholar
  45. [45]
    A. Aurilia, Y. Takahashi and P.K. Townsend, The U(1) problem and the Higgs mechanism in two-dimensions and four-dimensions, Phys. Lett. B 95 (1980) 265 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    C. Adam, R.A. Bertlmann and P. Hofer, Overview on the anomaly and Schwinger term in two-dimensional QED, Riv. Nuovo Cim. 16N8 (1993) 1 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  47. [47]
    D. Wolf and J. Zittartz, Bosons and fermions in one space dimension, Z. Phys. B 51 (1983) 65.ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    J. von Delft and H. Schoeller, Bosonization for beginners: refermionization for experts, Annalen Phys. 7 (1998) 225 [cond-mat/9805275] [INSPIRE] and references therein.
  49. [49]
    D. Sénéchal, An introduction to bosonization, cond-mat/9908262 [INSPIRE].
  50. [50]
    E. Mottola and R. Vaulin, Macroscopic effects of the quantum trace anomaly, Phys. Rev. D 74 (2006) 064004 [gr-qc/0604051] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Dettki, I. Sachs and A. Wipf, Generalized gauged Thirring model on curved space-times, hep-th/9308067 [INSPIRE].
  52. [52]
    S.R. Coleman, D.J. Gross and R. Jackiw, Fermion avatars of the Sugawara model, Phys. Rev. 180 (1969) 1359 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Tomiya, The Schwinger terms and the gravitational anomaly, Phys. Lett. B 167 (1986) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Ebner, R. Heid and G. Lopes Cardoso, Gravitational anomalies and Schwinger terms, Z. Phys. C 37 (1987) 85 [INSPIRE].ADSGoogle Scholar
  55. [55]
    R.A. Bertlmann and E. Kohlprath, Two-dimensional gravitational anomalies, Schwinger terms and dispersion relations, Annals Phys. 288 (2001) 137 [hep-th/0011067] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  56. [56]
    P. Goddard and D.I. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A 1 (1986) 303 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, New York U.S.A. (1997).CrossRefzbMATHGoogle Scholar
  60. [60]
    C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Graviton vertices and the mapping of anomalous correlators to momentum space for a general conformal field theory, JHEP 08 (2012) 147 [arXiv:1203.1339] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Serino, Conformal anomaly actions and dilaton interactions, arXiv:1407.7113 [INSPIRE].
  62. [62]
    P.H. Ginsparg, Applied conformal field theory, in Les Houches Summer School, France (1988) [hep-th/9108028] [INSPIRE].
  63. [63]
    J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    J. Erdmenger, Conformally covariant differential operators: properties and applications, Class. Quant. Grav. 14 (1997) 2061 [hep-th/9704108] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  66. [66]
    J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Daniel N. Blaschke
    • 1
  • Raúl Carballo-Rubio
    • 2
  • Emil Mottola
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A.
  2. 2.Instituto de Astrofísica de Andalucía (IAA-CSIC)GranadaSpain

Personalised recommendations