Advertisement

Journal of High Energy Physics

, 2014:151 | Cite as

Inflation from Minkowski space

  • David Pirtskhalava
  • Luca Santoni
  • Enrico Trincherini
  • Patipan Uttayarat
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a class of scalar models that, once coupled to gravity, lead to cosmologies that smoothly and stably connect an inflationary quasi-de Sitter universe to a low, or even zero-curvature, maximally symmetric spacetime in the asymptotic past, strongly violating the null energy condition \( \left(\overset{\cdot }{H}\gg {H}^2\right) \) at intermediate times. The models are deformations of the conformal galileon lagrangian and are therefore based on symmetries, both exact and approximate, that ensure the quantum robustness of the whole picture. The resulting cosmological backgrounds can be viewed as regularized extensions of the galilean genesis scenario, or, equivalently, as ‘early-time-complete’ realizations of inflation. The late-time inflationary dynamics possesses phenomenologically interesting properties: it can produce a large tensor-to-scalar ratio within the regime of validity of the effective field theory and can lead to sizeable equilateral nongaussianities.

Keywords

Cosmology of Theories beyond the SM Classical Theories of Gravity Effective field theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    S.D.H. Hsu, A. Jenkins and M.B. Wise, Gradient instability for ω < −1, Phys. Lett. B 597 (2004) 270 [astro-ph/0406043] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  4. [4]
    P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    G.R. Dvali, G. Gabadadze and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Creminelli, A. Nicolis and E. Trincherini, Galilean Genesis: An Alternative to inflation, JCAP 11 (2010) 021 [arXiv:1007.0027] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Creminelli, K. Hinterbichler, J. Khoury, A. Nicolis and E. Trincherini, Subluminal Galilean Genesis, JHEP 02 (2013) 006 [arXiv:1209.3768] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    V.A. Rubakov, Harrison-Zeldovich spectrum from conformal invariance, JCAP 09 (2009) 030 [arXiv:0906.3693] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Osipov and V. Rubakov, Scalar tilt from broken conformal invariance, JETP Lett. 93 (2011) 52 [arXiv:1007.3417] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Hinterbichler and J. Khoury, The Pseudo-Conformal Universe: Scale Invariance from Spontaneous Breaking of Conformal Symmetry, JCAP 04 (2012) 023 [arXiv:1106.1428] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, DBI Realizations of the Pseudo-Conformal Universe and Galilean Genesis Scenarios, JCAP 12 (2012) 030 [arXiv:1209.5742] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, Dirac-Born-Infeld Genesis: An Improved Violation of the Null Energy Condition, Phys. Rev. Lett. 110 (2013) 241303 [arXiv:1212.3607] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Creminelli, J. Gleyzes, J. Noreña and F. Vernizzi, Resilience of the standard predictions for primordial tensor modes, Phys. Rev. Lett. 113 (2014) 231301 [arXiv:1407.8439] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Kobayashi, M. Yamaguchi and J. Yokoyama, G-inflation: Inflation driven by the Galileon field, Phys. Rev. Lett. 105 (2010) 231302 [arXiv:1008.0603] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    V.F. Mukhanov and A. Vikman, Enhancing the tensor-to-scalar ratio in simple inflation, JCAP 02 (2006) 004 [astro-ph/0512066] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, Ghost inflation, JCAP 04 (2004) 001 [hep-th/0312100] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    L. Senatore, Tilted ghost inflation, Phys. Rev. D 71 (2005) 043512 [astro-ph/0406187] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].ADSGoogle Scholar
  25. [25]
    V.A. Rubakov, Consistent null-energy-condition violation: Towards creating a universe in the laboratory, Phys. Rev. D 88 (2013) 044015 [arXiv:1305.2614] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].ADSGoogle Scholar
  28. [28]
    B. Elder, A. Joyce and J. Khoury, From Satisfying to Violating the Null Energy Condition, Phys. Rev. D 89 (2014) 044027 [arXiv:1311.5889] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Fubini, A New Approach to Conformal Invariant Field Theories, Nuovo Cim. A 34 (1976) 521 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Nicolis, R. Rattazzi and E. Trincherini, Energys and amplitudespositivity, JHEP 05 (2010) 095 [Erratum ibid. 1111 (2011) 128] [arXiv:0912.4258] [INSPIRE].
  31. [31]
    K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys. B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett. B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Dvali, A. Gruzinov and M. Zaldarriaga, A new mechanism for generating density perturbations from inflation, Phys. Rev. D 69 (2004) 023505 [astro-ph/0303591] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect Dark Energy from Kinetic Gravity Braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    N. Bartolo, M. Fasiello, S. Matarrese and A. Riotto, Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Bispectrum, JCAP 08 (2010) 008 [arXiv:1004.0893] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Kobayashi, M. Yamaguchi and J. Yokoyama, Primordial non-Gaussianity from G-inflation, Phys. Rev. D 83 (2011) 103524 [arXiv:1103.1740] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M.M. Ivanov and S. Sibiryakov, UV-extending Ghost Inflation, JCAP 05 (2014) 045 [arXiv:1402.4964] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    A.D. Linde and V.F. Mukhanov, NonGaussian isocurvature perturbations from inflation, Phys. Rev. D 56 (1997) 535 [astro-ph/9610219] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458 (1999) 219 [hep-th/9904176] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    D. Baumann, D. Green and R.A. Porto, B-modes and the Nature of Inflation, arXiv:1407.2621 [INSPIRE].
  44. [44]
    S.L. Dubovsky and S.M. Sibiryakov, Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind, Phys. Lett. B 638 (2006) 509 [hep-th/0603158] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    S.W. Hawking, The chronology protection conjecture, Phys. Rev. D 46 (1992) 603 [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    I. Sawicki and A. Vikman, Hidden Negative Energies in Strongly Accelerated Universes, Phys. Rev. D 87 (2013) 067301 [arXiv:1209.2961] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C. Burrage, C. de Rham, L. Heisenberg and A.J. Tolley, Chronology Protection in Galileon Models and Massive Gravity, JCAP 07 (2012) 004 [arXiv:1111.5549] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • David Pirtskhalava
    • 1
  • Luca Santoni
    • 1
  • Enrico Trincherini
    • 1
    • 2
  • Patipan Uttayarat
    • 3
    • 4
  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.INFN - Sezione di PisaPisaItaly
  3. 3.Department of PhysicsUniversity of CincinnatiCincinnatiU.S.A.
  4. 4.Department of PhysicsSrinakharinwirot UniversityBangkokThailand

Personalised recommendations