Journal of High Energy Physics

, 2014:148 | Cite as

Charged Higgs search via AW ± /HW ± channel

  • Baradhwaj Coleppa
  • Felix Kling
  • Shufang Su
Open Access
Regular Article - Theoretical Physics


Models of electroweak symmetry breaking with extended Higgs sectors are theoretically well motivated. In this study, we focus on models with a low energy spectrum containing a pair of charged scalars H ±, as well as a light scalar H and/or a pseudoscalar A. We study the H ± tb associated production with H ±AW ± /HW ±, which could reach sizable branching fractions in certain parameter regions. With detailed collider analysis, we obtain the exclusion bounds as well as discovery reach at the 14 TeV LHC for the process ppH ± tbAW ± tb/HW ± tbττbbWW, bbbbWW. We find that for a daughter particle mass of 70 GeV, the 95% C.L. exclusion reach in σ × BR varies from about 60 fb to 25 fb, for m H ± ranging from 150 GeV to 500 GeV with 300 fb−1 integrated luminosity in the τ τ mode. We further interpret these bounds in the context of Type II Two Higgs Doublet Model. The exclusion region in the m H ± − tan β plane can be extended to m H ± = 600 GeV, while discovery is possible for m H ± ≲ 400 GeV with 300 fb−1 integrated luminosity. The exotic decay mode H ±AW ± /HW ± offers a complementary channel to the conventional mode H ±τν for charged Higgs searches.


Higgs Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-034, CERN, Geneva Switzerland (2013).
  3. [3]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005, CERN, Geneva Switzerland (2013).
  5. [5]
    ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].ADSGoogle Scholar
  6. [6]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H.E. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L.J. Hall and M.B. Wise, Flavor changing Higgs-boson couplings, Nucl. Phys. B 187 (1981) 397 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.F. Donoghue and L.F. Li, Properties of charged Higgs bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].ADSGoogle Scholar
  10. [10]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Barbieri, Looking beyond the standard model: the supersymmetric option, Riv. Nuovo Cim. 11N4 (1988) 1 [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N.D. Christensen, T. Han, Z. Liu and S. Su, Low-mass Higgs bosons in the NMSSM and their LHC implications, JHEP 08 (2013) 019 [arXiv:1303.2113] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Drees, M. Guchait and D.P. Roy, Signature of charged to neutral Higgs boson decay at the LHC in SUSY models, Phys. Lett. B 471 (1999) 39 [hep-ph/9909266] [INSPIRE].
  17. [17]
    B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [Erratum ibid. 09 (2013) 110] [arXiv:1304.0028] [INSPIRE].
  18. [18]
    C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Mohn, N. Gollub and K.A. Assamagan, The ATLAS discovery potential for a heavy charged Higgs boson in a large mass splitting MSSM scenario, ATL-PHYS-PUB-2005-017, CERN, Geneva Switzerland (2005).
  20. [20]
    K.A. Assamagan, Signature of the charged Higgs decay H ±Wh 0 with the ATLAS detector, Acta Phys. Polon. B 31 (2000) 881 [INSPIRE].ADSGoogle Scholar
  21. [21]
    K.A. Assamagan, Y. Coadou and A. Deandrea, ATLAS discovery potential for a heavy charged Higgs boson, Eur. Phys. J. direct C 4 (2002) 9 [hep-ph/0203121] [INSPIRE].Google Scholar
  22. [22]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE] and 2013 partial update for the 2014 edition.
  23. [23]
    B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].Google Scholar
  24. [24]
    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  26. [26]
    LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  27. [27]
    A.G. Akeroyd and S. Baek, Large mass splittings between charged and neutral Higgs bosons in the MSSM, Phys. Lett. B 525 (2002) 315 [hep-ph/0105228] [INSPIRE].
  28. [28]
    ATLAS collaboration, Search for charged Higgs bosons in the τ + jets final state with pp collision data recorded at \( \sqrt{s} \) = 8 TeV with the ATLAS experiment, ATLAS-CONF-2013-090, CERN, Geneva Switzerland (2013).
  29. [29]
    CMS collaboration, Search for charged Higgs bosons with the H +τν decay channel in the fully hadronic final state at \( \sqrt{s} \) = 8 TeV, CMS-PAS-HIG-14-020, CERN, Geneva Switzerland (2014).
  30. [30]
    ATLAS collaboration, Search for a light charged Higgs boson in the decay channel H +\( c\overline{s} \) in \( t\overline{t} \) events using pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2465 [arXiv:1302.3694] [INSPIRE].ADSGoogle Scholar
  31. [31]
    B. Mohn, M. Flechl and J. Alwall, ATLAS discovery potential for the charged Higgs boson in H +τν decays, ATL-PHYS-PUB-2007-006, CERN, Geneva Switzerland (2007).
  32. [32]
    R. Guedes, S. Moretti and R. Santos, Charged Higgs bosons in single top production at the LHC, JHEP 10 (2012) 119 [arXiv:1207.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Hashemi, Single top events as a source of light charged Higgs in the fully hadronic final state at LHC, JHEP 05 (2013) 112 [arXiv:1305.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Hashemi, Observability of light charged Higgs decay to muon in top quark pair events at LHC, Eur. Phys. J. C 72 (2012) 1994 [arXiv:1109.5356] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Hashemi, Observability of heavy charged Higgs through s-channel single top events at LHC, JHEP 11 (2013) 005 [arXiv:1310.5209] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Q.-H. Cao, X. Wan, X.-P. Wang and S.-H. Zhu, Searching for charged Higgs boson in polarized top quark, Phys. Rev. D 87 (2013) 055022 [arXiv:1301.6608] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Yang and Q.-S. Yan, Searching for heavy charged Higgs boson with jet substructure at the LHC, JHEP 02 (2012) 074 [arXiv:1111.4530] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K.A. Assamagan and N. Gollub, The ATLAS discovery potential for a heavy charged Higgs boson in ggtbH ± with H ±tb, Eur. Phys. J. C 39S2 (2005) 25 [hep-ph/0406013] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P.S.B. Dev and A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural standard model alignment, JHEP 12 (2014) 024 [arXiv:1408.3405] [INSPIRE].Google Scholar
  40. [40]
    S.-S. Bao, X. Gong, H.-L. Li, S.-Y. Li and Z.-G. Si, Identify charged Higgs boson in W ± H associated production at LHC, Phys. Rev. D 85 (2012) 075005 [arXiv:1112.0086] [INSPIRE].ADSGoogle Scholar
  41. [41]
    U. Maitra, B. Mukhopadhyaya, S. Nandi, S.K. Rai and A. Shivaji, Searching for an elusive charged Higgs at the Large Hadron Collider, Phys. Rev. D 89 (2014) 055024 [arXiv:1401.1775] [INSPIRE].ADSGoogle Scholar
  42. [42]
    L. Basso et al., Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM, JHEP 11 (2012) 011 [arXiv:1205.6569] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Dermisek, J.P. Hall, E. Lunghi and S. Shin, A new avenue to charged Higgs discovery in multi-Higgs models, JHEP 04 (2014) 140 [arXiv:1311.7208] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].Google Scholar
  45. [45]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of τ leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].Google Scholar
  46. [46]
    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].ADSGoogle Scholar
  47. [47]
  48. [48]
    S. Dittmaier, M. Krämer, M. Spira and M. Walser, Charged-Higgs-boson production at the LHC: NLO supersymmetric QCD corrections, Phys. Rev. D 83 (2011) 055005 [arXiv:0906.2648] [INSPIRE].ADSGoogle Scholar
  49. [49]
    B. Coleppa, F. Kling, A. Pyarelal and S. Su, LHC reach for a light charged Higgs, to appear.Google Scholar
  50. [50]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  54. [54]
    J. Anderson et al., Snowmass energy frontier simulations, arXiv:1309.1057 [INSPIRE].
  55. [55]
    L. Moneta et al., The RooStats project, PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE].
  56. [56]
    RooStats Team collaboration, G. Schott, RooStats for searches, arXiv:1203.1547 [INSPIRE].
  57. [57]
    Theta-auto testing documentation webpage,∼ott/theta/theta-auto/.
  58. [58]
    ATLAS collaboration, Measurement of the t-channel single top-quark production cross section in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Lett. B 717 (2012) 330 [arXiv:1205.3130] [INSPIRE].ADSGoogle Scholar
  59. [59]
    N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    H.S. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Chang et al., Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Flechl, M. Kramer, S. Lehti and S. Heinemeyer, MSSM Charged Higgs webpage,
  65. [65]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  69. [69]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    B. Coleppa, F. Kling and S. Su, Exotic decays of a heavy neutral Higgs through HZ/AZ channel, JHEP 09 (2014) 161 [arXiv:1404.1922] [INSPIRE].ADSGoogle Scholar
  71. [71]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  72. [72]
    Heavy Flavor Averaging Group (HFAG) online updates webpage,
  73. [73]
    E. Brownson et al., Heavy Higgs scalars at future hadron colliders (a Snowmass whitepaper), arXiv:1308.6334 [INSPIRE].
  74. [74]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSMathSciNetGoogle Scholar
  75. [75]
    L. Tong and S. Su, Exotic Higgs decay via charged Higgs, in preparation.Google Scholar
  76. [76]
    N.D. Christensen, T. Han and T. Li, Pair production of MSSM Higgs bosons in the non-decoupling region at the LHC, Phys. Rev. D 86 (2012) 074003 [arXiv:1206.5816] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ArizonaTucsonU.S.A.

Personalised recommendations