Journal of High Energy Physics

, 2014:112 | Cite as

Form factors of descendant operators: resonance identities in the sinh-Gordon model

Open Access
Regular Article - Theoretical Physics

Abstract

We study the space of local operators in the sinh-Gordon model in the framework of the bootstrap form factor approach. Our final goal is to identify the operators obtained by solving bootstrap equations with those defined in terms of the Lagrangian field. Here we try to identify operators at some very particular points, where the phenomenon of operator resonance takes place. The operator resonance phenomenon being perturbative, nevertheless, results in exact identities between some local operators. By applying an algebraic approach developed earlier for form factors we derive an infinite set of identities between particular descendant and exponential operators in the sinh-Gordon theory, which generalize the quantum equation of motion. We identify the corresponding descendant operators by comparing them with the result of perturbation theory.

Keywords

Integrable Field Theories Exact S-Matrix Quantum Groups 

References

  1. [1]
    B. Feigin and M. Lashkevich, Form factors of descendant operators: free field construction and reflection relations, J. Phys. A 42 (2009) 304014 [arXiv:0812.4776] [INSPIRE].MathSciNetGoogle Scholar
  2. [2]
    O. Alekseev and M. Lashkevich, Form factors of descendant operators: A L − 1(1) affine Toda theory, JHEP 07 (2010) 095 [arXiv:0912.5225] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Lashkevich and Y. Pugai, On form factors and Macdonald polynomials, JHEP 09 (2013) 095 [arXiv:1305.1674] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Lashkevich and Y. Pugai, Form factors in sinh- and sine-Gordon models, deformed Virasoro algebra, Macdonald polynomials and resonance identities, Nucl. Phys. B 877 (2013) 538 [arXiv:1307.0243] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    O. Alekseev, Form factors in the Bullough-Dodd related models: the Ising model in a magnetic field, JETP Lett. 95 (2012) 201 [arXiv:1106.4758] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    O. Alekseev, Form factors of descendant operators in the Bullough-Dodd model, JHEP 07 (2013) 112 [arXiv:1210.2818] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    Vl.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    Vl.S. Dotsenko and V.A. Fateev, Four-point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c ≤ 1, Nucl. Phys. B 251 (1985) 691 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    T.T. Wu, B.M. McCoy, C.A. Tracy and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B 13 (1976) 316 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.N. Vergeles and V.M. Gryanik, Two-dimensional quantum field theories having exact solutions, Sov. J. Nucl. Phys. 23 (1976) 704 [INSPIRE].Google Scholar
  12. [12]
    A.B. Zamolodchikov and Al.B. Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models, Annals Phys. 120 (1979) 253 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Karowski and P. Weisz, Exact form-factors in (1 + 1)-dimensional field theoretic models with soliton behavior, Nucl. Phys. B 139 (1978) 455 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    F.A. Smirnov, The quantum Gelfand-Levitan-Marchenko equations and form-factors in the sine-Gordon model, J. Phys. A 17 (1984) L873 [INSPIRE].ADSGoogle Scholar
  15. [15]
    F.A. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys. 14 (1992) 1 [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    S.L. Lukyanov, Free field representation for massive integrable models, Commun. Math. Phys. 167 (1995) 183 [hep-th/9307196] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    S.L. Lukyanov, Correlators of the Jost functions in the sine-Gordon model, Phys. Lett. B 325 (1994) 409 [hep-th/9311189] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    S.L. Lukyanov, A note on the deformed Virasoro algebra, Phys. Lett. B 367 (1996) 121 [hep-th/9509037] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    Al.B. Zamolodchikov, Two-point correlation function in scaling Lee-Yang model, Nucl. Phys. B 348 (1991) 619 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    A. Koubek and G. Mussardo, On the operator content of the sinh-Gordon model, Phys. Lett. B 311 (1993) 193 [hep-th/9306044] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    S. Lukyanov, Form-factors of exponential fields in the sine-Gordon model, Mod. Phys. Lett. A 12 (1997) 2543 [hep-th/9703190] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    H. Babujian and M. Karowski, Sine-Gordon breather form-factors and quantum field equations, J. Phys. A 35 (2002) 9081 [hep-th/0204097] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    J. Shiraishi, H. Kubo, H. Awata and S. Odake, A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996) 33 [q-alg/9507034] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    S. Lukyanov and Y. Pugai, Bosonization of ZF algebras: direction toward deformed Virasoro algebra, J. Exp. Theor. Phys. 82 (1996) 1021 [hep-th/9412128] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Lukyanov and Y. Pugai, Multipoint local height probabilities in the integrable RSOS model, Nucl. Phys. B 473 (1996) 631 [hep-th/9602074] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    V.A. Fateev and Y.P. Pugai, Correlation functions of disorder fields and parafermionic currents in Z N Ising models, J. Phys. A: Math. Theor. 42 (2009) 304013 [arXiv:0909.3347] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  27. [27]
    M. Lashkevich, Resonances in sinh- and sine-Gordon models and higher equations of motion in Liouville theory, J. Phys. A 45 (2012) 455403 [arXiv:1111.2547] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    A.B. Zamolodchikov and Al.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    V. Fateev, S. Lukyanov, A. Zamolodchikov and Al. Zamolodchikov, Expectation values of boundary fields in the boundary sine-Gordon model, Phys. Lett. B 406 (1997) 83 [hep-th/9702190] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    S. Lukyanov and A. Zamolodchikov, Exact expectation values of local fields in quantum sine-Gordon model, Nucl. Phys. B 493 (1997) 571 [hep-th/9611238] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    A. Zamolodchikov, Higher equations of motion in Liouville field theory, Int. J. Mod. Phys. A 19S2 (2004) 510 [hep-th/0312279] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  32. [32]
    Al.B. Zamolodchikov, Mass scale in the sine-Gordon model and its reductions, Int. J. Mod. Phys. A 10 (1995) 1125 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Kharkevich Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations