Advertisement

Journal of High Energy Physics

, 2014:110 | Cite as

Linear programming analysis of the R-parity violation within EDM-constraints

  • Nodoka Yamanaka
  • Toru Sato
  • Takahiro Kubota
Open Access
Regular Article - Theoretical Physics

Abstract

The constraint on the R-parity violating supersymmetric interactions is discussed in the light of current experimental data of the electric dipole moment of neutron, 129Xe , 205Tl, and 199Hg atoms, and YbF and ThO molecules. To investigate the constraints without relying upon the assumption of the dominance of a particular combination of couplings over all the rest, an extensive use is made of the linear programming method in the scan of the parameter space. We give maximally possible values for the EDMs of the proton, deuteron, 3He nucleus, 211Rn, 225Ra, 210Fr, and the R-correlation of the neutron beta decay within the constraints from the current experimental data of the EDMs of neutron, 129Xe, 205Tl, and 199Hg atoms, and YbF and ThO molecules using the linear programming method. It is found that the R-correlation of the neutron beta decay and hadronic EDMs are very useful observables to constrain definite regions of the parameter space of the R-parity violating supersymmetry.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.F. Gunion and H.E. Haber, Higgs bosons in supersymmetric models. 1, Nucl. Phys. B 272 (1986) 1 [Erratum ibid. B 402 (1993) 567] [INSPIRE].
  3. [3]
    S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), pg. 1 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 1] [hep-ph/9709356] [INSPIRE].
  4. [4]
    G. Bhattacharyya, A brief review of R-parity violating couplings, hep-ph/9709395 [INSPIRE].
  5. [5]
    H.K. Dreiner, An introduction to explicit R-parity violation, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), pg. 565 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 565] [hep-ph/9707435] [INSPIRE].
  6. [6]
    M. Chemtob, Phenomenological constraints on broken R-parity symmetry in supersymmetry models, Prog. Part. Nucl. Phys. 54 (2005) 71 [hep-ph/0406029] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H.K. Dreiner, M. Krämer and B. O’Leary, Bounds on R-parity violating supersymmetric couplings from leptonic and semi-leptonic meson decays, Phys. Rev. D 75 (2007) 114016 [hep-ph/0612278] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Y. Kao and T. Takeuchi, Single-coupling bounds on R-parity violating supersymmetry, an update, arXiv:0910.4980 [INSPIRE].
  10. [10]
    H.K. Dreiner, K. Nickel, F. Staub and A. Vicente, New bounds on trilinear R-parity violation from lepton flavor violating observables, Phys. Rev. D 86 (2012) 015003 [arXiv:1204.5925] [INSPIRE].ADSGoogle Scholar
  11. [11]
    X.-G. He, B.H.J. McKellar and S. Pakvasa, The neutron electric dipole moment, Int. J. Mod. Phys. A 4 (1989) 5011 [Erratum ibid. A 6 (1991) 1063] [INSPIRE].
  12. [12]
    W. Bernreuther and M. Suzuki, The electric dipole moment of the electron, Rev. Mod. Phys. 63 (1991) 313 [Erratum ibid. 64 (1992) 633] [INSPIRE].
  13. [13]
    T. Fukuyama, Searching for new physics beyond the standard model in electric dipole moment, Int. J. Mod. Phys. A 27 (2012) 1230015 [arXiv:1201.4252] [INSPIRE].ADSGoogle Scholar
  14. [14]
    O. Naviliat-Cuncic and R.G.E. Timmermans, Electric dipole moments: flavor-diagonal CP violation, Comptes Rendus Physique 13 (2012) 168 [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric dipole moments of nucleons, nuclei and atoms: the standard model and beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].ADSGoogle Scholar
  16. [16]
    K. Jungmann, Searching for electric dipole moments, Ann. Phys. 525 (2013) 550 [INSPIRE].Google Scholar
  17. [17]
    I.B. Khriplovich and S.K. Lamoreaux, CP violation without strangeness, Springer, Berlin Germany (1997) [INSPIRE].Google Scholar
  18. [18]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].ADSMATHGoogle Scholar
  19. [19]
    J.S.M. Ginges and V.V. Flambaum, Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles, Phys. Rept. 397 (2004) 63 [physics/0309054] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Yamanaka, Analysis of the electric dipole moment in the R-parity violating supersymmetric standard model, Springer, Berlin Germany (2014) [INSPIRE].Google Scholar
  21. [21]
    M.A. Rosenberry and T.E. Chupp, Atomic electric dipole moment measurement using spin exchange pumped masers of 129 Xe and 3 He, Phys. Rev. Lett. 86 (2001) 22.ADSGoogle Scholar
  22. [22]
    B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 [INSPIRE].ADSGoogle Scholar
  23. [23]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].ADSGoogle Scholar
  24. [24]
    W.C. Griffith et al., Improved limit on the permanent electric dipole moment of 199 Hg, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].ADSGoogle Scholar
  25. [25]
    Muon (g-2) collaboration, G.W. Bennett et al., An improved limit on the muon electric dipole moment, Phys. Rev. D 80 (2009) 052008 [arXiv:0811.1207] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.J. Hudson et al., Improved measurement of the shape of the electron, Nature 473 (2011) 493 [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.M. Kara et al., Measurement of the electrons electric dipole moment using YbF molecules: methods and data analysis, New J. Phys. 14 (2012) 103051 [arXiv:1208.4507] [INSPIRE].ADSGoogle Scholar
  28. [28]
    ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Storage Ring EDM collaboration webpage, http://www.bnl.gov/edm/.
  30. [30]
    I.B. Khriplovich, Feasibility of search for nuclear electric dipole moments at ion storage rings, Phys. Lett. B 444 (1998) 98 [hep-ph/9809336] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    F.J.M. Farley et al., A new method of measuring electric dipole moments in storage rings, Phys. Rev. Lett. 93 (2004) 052001 [hep-ex/0307006] [INSPIRE].ADSGoogle Scholar
  32. [32]
    EDM collaboration, Y.K. Semertzidis et al., A new method for a sensitive deuteron EDM experiment, AIP Conf. Proc. 698 (2004) 200 [hep-ex/0308063] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Y.F. Orlov, W.M. Morse and Y.K. Semertzidis, Resonance method of electric-dipole-moment measurements in storage rings, Phys. Rev. Lett. 96 (2006) 214802 [hep-ex/0605022] [INSPIRE].ADSGoogle Scholar
  34. [34]
    P. Mueller et al., Search for EDM in 225 Ra, talk given at the 5th International conference onFundamental Physics Using Atoms”, Okayama Japan October 2011.Google Scholar
  35. [35]
    H. Abele, The neutron. Its properties and basic interactions, Prog. Part. Nucl. Phys. 60 (2008) 1 [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Dubbers and M.G. Schmidt, The neutron and its role in cosmology and particle physics, Rev. Mod. Phys. 83 (2011) 1111 [arXiv:1105.3694] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.W. Martin et al., Ultracold neutron sources and experiments, talk given at the 5th International conference onFundamental Physics Using Atoms”, Okayama Japan October 2011.Google Scholar
  38. [38]
    A. Yoshimi et al., Low-frequency 129 Xe nuclear spin oscillator with optical spin detection, Phys. Lett. A 376 (2012) 1924.ADSGoogle Scholar
  39. [39]
    Y. Sakemi et al., Search for a permanent EDM using laser cooled radioactive atom, J. Phys. Conf. Ser. 302 (2011) 012051 [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, Lefthanded currents and CP-violation, Nucl. Phys. B 109 (1976) 213 [INSPIRE].ADSGoogle Scholar
  41. [41]
    E.P. Shabalin, Electric dipole moment of quark in a gauge theory with left-handed currents, Sov. J. Nucl. Phys. 28 (1978) 75 [Yad. Fiz. 28 (1978) 151] [INSPIRE].
  42. [42]
    E.P. Shabalin, Electric dipole moment of quark in the Kobayashi-Maskawa theory with account of the gluonic corrections, Sov. J. Nucl. Phys. 31 (1980) 864 [Yad. Fiz. 31 (1980) 1665] [INSPIRE].
  43. [43]
    E.P. Shabalin, The electric dipole moments of baryons in the Kobayashi-Maskawa CP noninvariant theory, Sov. J. Nucl. Phys. 32 (1980) 228 [Yad. Fiz. 32 (1980) 443] [INSPIRE].
  44. [44]
    J.R. Ellis and M.K. Gaillard, Strong and weak CP-violation, Nucl. Phys. B 150 (1979) 141 [INSPIRE].ADSGoogle Scholar
  45. [45]
    D.V. Nanopoulos, A. Yildiz and P.H. Cox, On the electric dipole moment of the neutron, Phys. Lett. B 87 (1979) 53 [INSPIRE].ADSGoogle Scholar
  46. [46]
    M.B. Gavela et al., CP violation induced by penguin diagrams and the neutron electric dipole moment, Phys. Lett. B 109 (1982) 215 [INSPIRE].ADSGoogle Scholar
  47. [47]
    N.G. Deshpande, G. Eilam and W.L. Spence, Neutron electric dipole moment and Kobayashi-Maskawa CP violation, Phys. Lett. B 108 (1982) 42 [INSPIRE].ADSGoogle Scholar
  48. [48]
    I.B. Khriplovich and A.R. Zhitnitsky, What is the value of the neutron electric dipole moment in the Kobayashi-Maskawa model?, Phys. Lett. B 109 (1982) 490 [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.O. Eeg and I. Picek, Two loop diagrams for the electric dipole moment of the neutron, Nucl. Phys. B 244 (1984) 77 [INSPIRE].ADSGoogle Scholar
  50. [50]
    C. Hamzaoui and A. Barroso, Neutron electric dipole moment including gluon corrections, Phys. Lett. B 154 (1985) 202 [INSPIRE].ADSGoogle Scholar
  51. [51]
    I.B. Khriplovich, Quark electric dipole moment and induced θ term in the Kobayashi-Maskawa model, Phys. Lett. B 173 (1986) 193 [Sov. J. Nucl. Phys. 44 (1986) 659] [Yad. Fiz. 44 (1986) 1019] [INSPIRE].
  52. [52]
    I.B. Khriplovich, Quark electric dipole moment and induced θ term in the Kobayashi-Maskawa model, Phys. Lett. B 173 (1986) 193 [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.F. Donoghue, B.R. Holstein and M.J. Musolf, Electric dipole moments of nuclei, Phys. Lett. B 196 (1987) 196 [INSPIRE].ADSGoogle Scholar
  54. [54]
    M.E. Pospelov and I.B. Khriplovich, Electric dipole moment of the W boson and the electron in the Kobayashi-Maskawa model, Sov. J. Nucl. Phys. 53 (1991) 638 [Yad. Fiz. 53 (1991) 1030] [INSPIRE].
  55. [55]
    X.-G. He and B. McKellar, Constraints on CP-violating nucleon-nucleon interactions in gauge models from atomic electric dipole moment, Phys. Rev. D 46 (1992) 2131 [INSPIRE].ADSGoogle Scholar
  56. [56]
    X.-G. He, B.H.J. McKellar and S. Pakvasa, CP violating electron-nucleon interactions in multi-Higgs doublet and leptoquark models, Phys. Lett. B 283 (1992) 348 [INSPIRE].ADSGoogle Scholar
  57. [57]
    M.J. Booth, The electric dipole moment of the W and electron in the standard model, hep-ph/9301293 [INSPIRE].
  58. [58]
    M.J. Booth, A note on Weinberg operators in the standard model, Phys. Rev. D 48 (1993) 1248 [INSPIRE].ADSGoogle Scholar
  59. [59]
    M.E. Pospelov, CP odd effective gluonic Lagrangian in the Kobayashi-Maskawa model, Phys. Lett. B 328 (1994) 441 [hep-ph/9402317] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Czarnecki and B. Krause, Neutron electric dipole moment in the standard model: valence quark contributions, Phys. Rev. Lett. 78 (1997) 4339 [hep-ph/9704355] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. Dar, The neutron EDM in the SM: a review, hep-ph/0008248 [INSPIRE].
  62. [62]
    T. Mannel and N. Uraltsev, Loop-less electric dipole moment of the nucleon in the standard model, Phys. Rev. D 85 (2012) 096002 [arXiv:1202.6270] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.R. Ellis, S. Ferrara and D.V. Nanopoulos, CP violation and supersymmetry, Phys. Lett. B 114 (1982) 231 [INSPIRE].ADSGoogle Scholar
  64. [64]
    W. Buchmüller and D. Wyler, CP violation and R invariance in supersymmetric models of strong and electroweak interactions, Phys. Lett. B 121 (1983) 321 [INSPIRE].ADSGoogle Scholar
  65. [65]
    J. Polchinski and M.B. Wise, The electric dipole moment of the neutron in low-energy supergravity, Phys. Lett. B 125 (1983) 393 [INSPIRE].ADSGoogle Scholar
  66. [66]
    F. del Aguila, M.B. Gavela, J.A. Grifols and A. Mendez, Specifically supersymmetric contribution to electric dipole moments, Phys. Lett. B 126 (1983) 71 [Erratum ibid. B 129 (1983) 473] [INSPIRE].
  67. [67]
    D.V. Nanopoulos and M. Srednicki, The demon of local SUSY, Phys. Lett. B 128 (1983) 61 [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    M. Dugan, B. Grinstein and L.J. Hall, CP violation in the minimal N = 1 supergravity theory, Nucl. Phys. B 255 (1985) 413 [INSPIRE].ADSGoogle Scholar
  69. [69]
    P. Nath, CP violation via electroweak gauginos and the electric dipole moment of the electron, Phys. Rev. Lett. 66 (1991) 2565 [INSPIRE].ADSGoogle Scholar
  70. [70]
    Y. Kizukuri and N. Oshimo, Implications of the neutron electric dipole moment for supersymmetric models, Phys. Rev. D 45 (1992) 1806 [INSPIRE].ADSGoogle Scholar
  71. [71]
    Y. Kizukuri and N. Oshimo, The neutron and electron electric dipole moments in supersymmetric theories, Phys. Rev. D 46 (1992) 3025 [INSPIRE].ADSGoogle Scholar
  72. [72]
    W. Fischler, S. Paban and S.D. Thomas, Bounds on microscopic physics from P and T violation in atoms and molecules, Phys. Lett. B 289 (1992) 373 [hep-ph/9205233] [INSPIRE].ADSGoogle Scholar
  73. [73]
    T. Inui, Y. Mimura, N. Sakai and T. Sasaki, Neutron electric dipole moment in the minimal supersymmetric standard model, Nucl. Phys. B 449 (1995) 49 [hep-ph/9503383] [INSPIRE].ADSGoogle Scholar
  74. [74]
    T. Ibrahim and P. Nath, The neutron and the electron electric dipole moment in N = 1 supergravity unification, Phys. Rev. D 57 (1998) 478 [Erratum ibid. D 58 (1998) 019901] [Erratum ibid. D 60 (1999) 079903] [Erratum ibid. D 60 (1999) 119901] [hep-ph/9708456] [INSPIRE].
  75. [75]
    T. Ibrahim and P. Nath, The chromoelectric and purely gluonic operator contributions to the neutron electric dipole moment in N = 1 supergravity, Phys. Lett. B 418 (1998) 98 [hep-ph/9707409] [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    T. Ibrahim and P. Nath, The neutron and the lepton EDMs in MSSM, large CP-violating phases and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [Erratum ibid. D 60 (1999) 099902] [hep-ph/9807501] [INSPIRE].
  77. [77]
    S. Pokorski, J. Rosiek and C.A. Savoy, Constraints on phases of supersymmetric flavor conserving couplings, Nucl. Phys. B 570 (2000) 81 [hep-ph/9906206] [INSPIRE].ADSGoogle Scholar
  78. [78]
    S. Yaser Ayazi and Y. Farzan, Reconciling large CP-violating phases with bounds on the electric dipole moments in the MSSM, Phys. Rev. D 74 (2006) 055008 [hep-ph/0605272] [INSPIRE].ADSGoogle Scholar
  79. [79]
    S.Y. Ayazi and Y. Farzan, Electron electric dipole moment from lepton flavor violation, JHEP 06 (2007) 013 [hep-ph/0702149] [INSPIRE].ADSGoogle Scholar
  80. [80]
    T.H. West, Fermion electric dipole moments induced by T- and P-odd WWγ interactions in the multi-Higgs and supersymmetry models, Phys. Rev. D 50 (1994) 7025 [INSPIRE].ADSGoogle Scholar
  81. [81]
    T. Kadoyoshi and N. Oshimo, Neutron electric dipole moment from supersymmetric anomalous W boson coupling, Phys. Rev. D 55 (1997) 1481 [hep-ph/9607301] [INSPIRE].ADSGoogle Scholar
  82. [82]
    D. Chang, W.-Y. Keung and A. Pilaftsis, New two loop contribution to electric dipole moment in supersymmetric theories, Phys. Rev. Lett. 82 (1999) 900 [Erratum ibid. 83 (1999) 3972] [hep-ph/9811202] [INSPIRE].
  83. [83]
    A. Pilaftsis, Higgs boson two loop contributions to electric dipole moments in the MSSM, Phys. Lett. B 471 (1999) 174 [hep-ph/9909485] [INSPIRE].ADSGoogle Scholar
  84. [84]
    D. Chang, W.-F. Chang and W.-Y. Keung, Additional two loop contributions to electric dipole moments in supersymmetric theories, Phys. Lett. B 478 (2000) 239 [hep-ph/9910465] [INSPIRE].ADSGoogle Scholar
  85. [85]
    A. Pilaftsis, Loop induced CP-violation in the gaugino and Higgsino sectors of supersymmetric theories, Phys. Rev. D 62 (2000) 016007 [hep-ph/9912253] [INSPIRE].ADSGoogle Scholar
  86. [86]
    D. Chang, W.-F. Chang and W.-Y. Keung, New constraint from electric dipole moments on chargino baryogenesis in MSSM, Phys. Rev. D 66 (2002) 116008 [hep-ph/0205084] [INSPIRE].ADSGoogle Scholar
  87. [87]
    T.-F. Feng, X.-Q. Li, J. Maalampi and X.-M. Zhang, Two-loop gluino contributions to neutron electric dipole moment in CP-violating MSSM, Phys. Rev. D 71 (2005) 056005 [hep-ph/0412147] [INSPIRE].ADSGoogle Scholar
  88. [88]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].ADSMathSciNetGoogle Scholar
  89. [89]
    D. Chang, W.-F. Chang and W.-Y. Keung, Electric dipole moment in the split supersymmetry models, Phys. Rev. D 71 (2005) 076006 [hep-ph/0503055] [INSPIRE].ADSGoogle Scholar
  90. [90]
    G.F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B 634 (2006) 307 [hep-ph/0510197] [INSPIRE].ADSGoogle Scholar
  91. [91]
    T.-F. Feng, X.-Q. Li, L. Lin, J. Maalampi and H.-S. Song, The two-loop supersymmetric corrections to lepton anomalous magnetic and electric dipole moments, Phys. Rev. D 73 (2006) 116001 [hep-ph/0604171] [INSPIRE].ADSGoogle Scholar
  92. [92]
    Y. Li, S. Profumo and M. Ramsey-Musolf, Higgs-Higgsino-Gaugino induced two loop electric dipole moments, Phys. Rev. D 78 (2008) 075009 [arXiv:0806.2693] [INSPIRE].ADSGoogle Scholar
  93. [93]
    N. Yamanaka, Two-loop level rainbow-like supersymmetric contribution to the fermion EDM, Phys. Rev. D 87 (2013) 011701 [arXiv:1211.1808] [INSPIRE].ADSGoogle Scholar
  94. [94]
    J. Dai, H. Dykstra, R.G. Leigh, S. Paban and D. Dicus, CP violation from three gluon operators in the supersymmetric standard model, Phys. Lett. B 237 (1990) 216 [Erratum ibid. B 242 (1990) 547] [INSPIRE].
  95. [95]
    M. Brhlik, G.J. Good and G.L. Kane, Electric dipole moments do not require the CP-violating phases of supersymmetry to be small, Phys. Rev. D 59 (1999) 115004 [hep-ph/9810457] [INSPIRE].ADSGoogle Scholar
  96. [96]
    S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories, Nucl. Phys. B 606 (2001) 151 [hep-ph/0103320] [INSPIRE].ADSGoogle Scholar
  97. [97]
    A. Pilaftsis, Higgs mediated electric dipole moments in the MSSM: an application to baryogenesis and Higgs searches, Nucl. Phys. B 644 (2002) 263 [hep-ph/0207277] [INSPIRE].ADSGoogle Scholar
  98. [98]
    O. Lebedev and M. Pospelov, Electric dipole moments in the limit of heavy superpartners, Phys. Rev. Lett. 89 (2002) 101801 [hep-ph/0204359] [INSPIRE].ADSGoogle Scholar
  99. [99]
    D.A. Demir, O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Electric dipole moments in the MSSM at large tan β, Nucl. Phys. B 680 (2004) 339 [hep-ph/0311314] [INSPIRE].ADSGoogle Scholar
  100. [100]
    O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP-violation with the deuteron electric dipole moment, Phys. Rev. D 70 (2004) 016003 [hep-ph/0402023] [INSPIRE].ADSGoogle Scholar
  101. [101]
    K.A. Olive, M. Pospelov, A. Ritz and Y. Santoso, CP-odd phase correlations and electric dipole moments, Phys. Rev. D 72 (2005) 075001 [hep-ph/0506106] [INSPIRE].ADSGoogle Scholar
  102. [102]
    S. Abel and O. Lebedev, Neutron-electron EDM correlations in supersymmetry and prospects for EDM searches, JHEP 01 (2006) 133 [hep-ph/0508135] [INSPIRE].ADSGoogle Scholar
  103. [103]
    J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric dipole moments in the MSSM reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [INSPIRE].ADSGoogle Scholar
  104. [104]
    Y. Li, S. Profumo and M. Ramsey-Musolf, A comprehensive analysis of electric dipole moment constraints on CP-violating phases in the MSSM, JHEP 08 (2010) 062 [arXiv:1006.1440] [INSPIRE].ADSGoogle Scholar
  105. [105]
    K. Fuyuto, J. Hisano, N. Nagata and K. Tsumura, QCD corrections to quark (chromo)electric dipole moments in high-scale supersymmetry, JHEP 12 (2013) 010 [arXiv:1308.6493] [INSPIRE].ADSGoogle Scholar
  106. [106]
    S.A.R. Ellis and G.L. Kane, Theoretical prediction and impact of fundamental electric dipole moments, arXiv:1405.7719 [INSPIRE].
  107. [107]
    T. Falk, K.A. Olive, M. Pospelov and R. Roiban, MSSM predictions for the electric dipole moment of the 199 Hg atom, Nucl. Phys. B 560 (1999) 3 [hep-ph/9904393] [INSPIRE].ADSGoogle Scholar
  108. [108]
    J. Hisano and Y. Shimizu, Hadronic EDMs induced by the strangeness and constraints on supersymmetric CP phases, Phys. Rev. D 70 (2004) 093001 [hep-ph/0406091] [INSPIRE].ADSGoogle Scholar
  109. [109]
    G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP 11 (2005) 044 [hep-ph/0510137] [INSPIRE].ADSGoogle Scholar
  110. [110]
    J. Hisano and Y. Shimizu, BϕK s versus electric dipole moment of 199 Hg atom in supersymmetric models with right-handed squark mixing, Phys. Lett. B 581 (2004) 224 [hep-ph/0308255] [INSPIRE].ADSGoogle Scholar
  111. [111]
    M. Endo, M. Kakizaki and M. Yamaguchi, New constraint on squark flavor mixing from 199 Hg electric dipole moment, Phys. Lett. B 583 (2004) 186 [hep-ph/0311072] [INSPIRE].ADSGoogle Scholar
  112. [112]
    G.-C. Cho, N. Haba and M. Honda, Neutron electric dipole moment and flavor changing interactions in supersymmetric theories, Mod. Phys. Lett. A 20 (2005) 2969 [hep-ph/0409243] [INSPIRE].ADSGoogle Scholar
  113. [113]
    J. Hisano, M. Nagai and P. Paradisi, New two-loop contributions to hadronic EDMs in the MSSM, Phys. Lett. B 642 (2006) 510 [hep-ph/0606322] [INSPIRE].ADSGoogle Scholar
  114. [114]
    J. Hisano, M. Nagai and P. Paradisi, Electric dipole moments from flavor-changing supersymmetric soft terms, Phys. Rev. D 78 (2008) 075019 [arXiv:0712.1285] [INSPIRE].ADSGoogle Scholar
  115. [115]
    J. Hisano, M. Nagai and P. Paradisi, Flavor effects on the electric dipole moments in supersymmetric theories: a beyond leading order analysis, Phys. Rev. D 80 (2009) 095014 [arXiv:0812.4283] [INSPIRE].ADSGoogle Scholar
  116. [116]
    W. Altmannshofer, A.J. Buras and P. Paradisi, A lower bound on hadronic EDMs from CP-violation in \( D0-\overline{D0} \) mixing in SUSY alignment models, Phys. Lett. B 688 (2010) 202 [arXiv:1001.3835] [INSPIRE].ADSGoogle Scholar
  117. [117]
    J. Ellis, J.S. Lee and A. Pilaftsis, A geometric approach to CP-violation: applications to the MCPMFV SUSY model, JHEP 10 (2010) 049 [arXiv:1006.3087] [INSPIRE].ADSGoogle Scholar
  118. [118]
    J. Ellis, J.S. Lee and A. Pilaftsis, Maximal electric dipole moments of nuclei with enhanced Schiff moments, JHEP 02 (2011) 045 [arXiv:1101.3529] [INSPIRE].ADSGoogle Scholar
  119. [119]
    J. Ellis, J.S. Lee and A. Pilaftsis, Note on a differential-geometrical construction of optimal directions in linearly-constrained systems, arXiv:1009.1151 [INSPIRE].
  120. [120]
    W. Dekens et al., Unraveling models of CP-violation through electric dipole moments of light nuclei, JHEP 07 (2014) 069 [arXiv:1404.6082] [INSPIRE].ADSGoogle Scholar
  121. [121]
    R. Barbieri and A. Masiero, Supersymmetric models with low-energy baryon number violation, Nucl. Phys. B 267 (1986) 679 [INSPIRE].ADSGoogle Scholar
  122. [122]
    R.M. Godbole, S. Pakvasa, S.D. Rindani and X. Tata, Fermion dipole moments in supersymmetric models with explicitly broken R-parity, Phys. Rev. D 61 (2000) 113003 [hep-ph/9912315] [INSPIRE].ADSGoogle Scholar
  123. [123]
    S.A. Abel, A. Dedes and H.K. Dreiner, Dipole moments of the electron, neutrino and neutron in the MSSM without R-parity symmetry, JHEP 05 (2000) 013 [hep-ph/9912429] [INSPIRE].ADSGoogle Scholar
  124. [124]
    D. Chang, W.-F. Chang, M. Frank and W.-Y. Keung, The neutron electric dipole moment and CP-violating couplings in the supersymmetric standard model without R-parity, Phys. Rev. D 62 (2000) 095002 [hep-ph/0004170] [INSPIRE].ADSGoogle Scholar
  125. [125]
    P. Herczeg, P, T violating electron-nucleon interactions in the R-parity violating minimal supersymmetric standard model, Phys. Rev. D 61 (2000) 095010 [hep-ph/9912495] [INSPIRE].ADSGoogle Scholar
  126. [126]
    N. Yamanaka, R-parity violating supersymmetric contributions to the P, CP-odd electron-nucleon interaction at the one-loop level, Phys. Rev. D 85 (2012) 115012 [arXiv:1204.6466] [INSPIRE].ADSGoogle Scholar
  127. [127]
    Y.Y. Keum and O.C.W. Kong, R-parity violating contribution to neutron EDM at one loop, Phys. Rev. Lett. 86 (2001) 393 [hep-ph/0004110] [INSPIRE].ADSGoogle Scholar
  128. [128]
    Y.Y. Keum and O.C.W. Kong, On one loop neutron electric dipole moment from supersymmetry without R-parity, Phys. Rev. D 63 (2001) 113012 [hep-ph/0101113] [INSPIRE].ADSGoogle Scholar
  129. [129]
    C.-C. Chiou, O.C.W. Kong and R.D. Vaidya, Quark loop contributions to neutron, deuteron and mercury EDMs from supersymmetry without R-parity, Phys. Rev. D 76 (2007) 013003 [arXiv:0705.3939] [INSPIRE].ADSGoogle Scholar
  130. [130]
    K. Choi, E.J. Chun and K. Hwang, Fermion electric dipole moments in supersymmetric models with R-parity violation, Phys. Rev. D 63 (2001) 013002 [hep-ph/0004101] [INSPIRE].ADSGoogle Scholar
  131. [131]
    A. Faessler, T. Gutsche, S. Kovalenko and V.E. Lyubovitskij, Hadronic electric dipole moments in R-parity violating supersymmetry, Phys. Rev. D 73 (2006) 114023 [hep-ph/0604026] [INSPIRE].ADSGoogle Scholar
  132. [132]
    A. Faessler, T. Gutsche, S. Kovalenko and V.E. Lyubovitskij, Implications of R-parity violating supersymmetry for atomic and hadronic EDMs, Phys. Rev. D 74 (2006) 074013 [hep-ph/0607269] [INSPIRE].ADSGoogle Scholar
  133. [133]
    N. Yamanaka, T. Sato and T. Kubota, A reappraisal of two-loop contributions to the fermion electric dipole moments in R-parity violating supersymmetric models, Phys. Rev. D 85 (2012) 117701 [arXiv:1202.0106] [INSPIRE].ADSGoogle Scholar
  134. [134]
    N. Yamanaka, Sfermion loop contribution to the two-loop level fermion electric dipole moment in R-parity violating supersymmetric models, Phys. Rev. D 86 (2012) 075029 [arXiv:1208.4521] [INSPIRE].ADSGoogle Scholar
  135. [135]
    N. Yamanaka, T. Sato and T. Kubota, R-parity violating supersymmetric Barr-Zee type contributions to the fermion electric dipole moment with weak gauge boson exchange, Phys. Rev. D 87 (2013) 115011 [arXiv:1212.6833] [INSPIRE].ADSGoogle Scholar
  136. [136]
    J.R. Ellis, G. Gelmini, C. Jarlskog, G.G. Ross and J.W.F. Valle, Phenomenology of supersymmetry with broken R-parity, Phys. Lett. B 150 (1985) 142 [INSPIRE].ADSGoogle Scholar
  137. [137]
    M. Bisset, O.C.W. Kong, C. Macesanu and L.H. Orr, A simple phenomenological parametrization of supersymmetry without R-parity, Phys. Lett. B 430 (1998) 274 [hep-ph/9804282] [INSPIRE].ADSMathSciNetGoogle Scholar
  138. [138]
    O.C.W. Kong, On the formulation of the generic supersymmetric standard model (or supersymmetry without R-parity), Int. J. Mod. Phys. A 19 (2004) 1863 [hep-ph/0205205] [INSPIRE].ADSGoogle Scholar
  139. [139]
    S. Dawson, R-parity breaking in supersymmetric theories, Nucl. Phys. B 261 (1985) 297 [INSPIRE].ADSGoogle Scholar
  140. [140]
    S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].
  141. [141]
    R.G. Leigh, S. Paban and R.M. Xu, Electric dipole moment of electron, Nucl. Phys. B 352 (1991) 45 [INSPIRE].ADSGoogle Scholar
  142. [142]
    D. Chang, W.-Y. Keung and J. Liu, The electric dipole moment of W boson, Nucl. Phys. B 355 (1991) 295 [INSPIRE].ADSGoogle Scholar
  143. [143]
    D. Chang, W.-Y. Keung and T.C. Yuan, Two loop bosonic contribution to the electron electric dipole moment, Phys. Rev. D 43 (1991) 14 [INSPIRE].ADSGoogle Scholar
  144. [144]
    C. Kao and R.-M. Xu, Charged Higgs loop contribution to the electric dipole moment of electron, Phys. Lett. B 296 (1992) 435 [INSPIRE].ADSGoogle Scholar
  145. [145]
    V.D. Barger, A.K. Das and C. Kao, The electric dipole moment of the muon in a two-Higgs doublet model, Phys. Rev. D 55 (1997) 7099 [hep-ph/9611344] [INSPIRE].ADSGoogle Scholar
  146. [146]
    D. Bowser-Chao, D. Chang and W.-Y. Keung, Electron electric dipole moment from CP-violation in the charged Higgs sector, Phys. Rev. Lett. 79 (1997) 1988 [hep-ph/9703435] [INSPIRE].ADSGoogle Scholar
  147. [147]
    A.J. Buras, G. Isidori and P. Paradisi, EDMs versus CPV in B s,d mixing in two Higgs doublet models with MFV, Phys. Lett. B 694 (2011) 402 [arXiv:1007.5291] [INSPIRE].ADSGoogle Scholar
  148. [148]
    T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [arXiv:1311.4704] [INSPIRE].Google Scholar
  149. [149]
    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CPV phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].ADSGoogle Scholar
  150. [150]
    K. Cheung, J.S. Lee, E. Senaha and P.-Y. Tseng, Confronting Higgcision with electric dipole moments, JHEP 06 (2014) 149 [arXiv:1403.4775] [INSPIRE].ADSGoogle Scholar
  151. [151]
    ATLAS collaboration, Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSGoogle Scholar
  152. [152]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].ADSGoogle Scholar
  153. [153]
    ATLAS collaboration, Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE].ADSGoogle Scholar
  154. [154]
    ATLAS collaboration, Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].ADSGoogle Scholar
  155. [155]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic \( t\overline{t}+{E}_{\mathrm{T}}^{\mathrm{miss}} \) final state in 21 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-024, CERN, Geneva Switzerland (2013).
  156. [156]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-035, CERN, Geneva Switzerland (2013).
  157. [157]
    CMS collaboration, Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  158. [158]
    CMS collaboration, Search for long-lived particles decaying to photons and missing energy in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 722 (2013) 273 [arXiv:1212.1838] [INSPIRE].ADSGoogle Scholar
  159. [159]
    CMS collaboration, Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV, Phys. Lett. B 725 (2013) 243 [arXiv:1305.2390] [INSPIRE].ADSGoogle Scholar
  160. [160]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSGoogle Scholar
  161. [161]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSGoogle Scholar
  162. [162]
    H. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Two-loop corrections to the muon magnetic moment from fermion/sfermion loops in the MSSM: detailed results, JHEP 02 (2014) 070 [arXiv:1311.1775] [INSPIRE].ADSGoogle Scholar
  163. [163]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [arXiv:1412.1408] [INSPIRE].ADSGoogle Scholar
  164. [164]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [INSPIRE].ADSGoogle Scholar
  165. [165]
    T. Bhattacharya, V. Cirigliano and R. Gupta, Neutron electric dipole moment from beyond the standard model, PoS(LATTICE 2012)179 [arXiv:1212.4918] [INSPIRE].
  166. [166]
    JLQCD collaboration, H. Ohki et al., Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry, Phys. Rev. D 78 (2008) 054502 [arXiv:0806.4744] [INSPIRE].ADSGoogle Scholar
  167. [167]
    PACS-CS collaboration, K.-I. Ishikawa et al., SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2 + 1 flavor lattice QCD, Phys. Rev. D 80 (2009) 054502 [arXiv:0905.0962] [INSPIRE].ADSGoogle Scholar
  168. [168]
    MILC collaboration, D. Toussaint and W. Freeman, The strange quark condensate in the nucleon in 2 + 1 flavor QCD, Phys. Rev. Lett. 103 (2009) 122002 [arXiv:0905.2432] [INSPIRE].ADSGoogle Scholar
  169. [169]
    R.D. Young and A.W. Thomas, Octet baryon masses and sigma terms from an SU(3) chiral extrapolation, Phys. Rev. D 81 (2010) 014503 [arXiv:0901.3310] [INSPIRE].ADSGoogle Scholar
  170. [170]
    R.D. Young and A.W. Thomas, Recent results on nucleon sigma terms in lattice QCD, Nucl. Phys. A 844 (2010) 266C [arXiv:0911.1757] [INSPIRE].ADSGoogle Scholar
  171. [171]
    JLQCD collaboration, K. Takeda et al., Nucleon strange quark content from two-flavor lattice QCD with exact chiral symmetry, Phys. Rev. D 83 (2011) 114506 [arXiv:1011.1964] [INSPIRE].ADSGoogle Scholar
  172. [172]
    QCDSF-UKQCD collaborations, R. Horsley et al., Hyperon sigma terms for 2 + 1 quark flavours, Phys. Rev. D 85 (2012) 034506 [arXiv:1110.4971] [INSPIRE].ADSGoogle Scholar
  173. [173]
    R. Babich et al., Exploring strange nucleon form factors on the lattice, Phys. Rev. D 85 (2012) 054510 [arXiv:1012.0562] [INSPIRE].ADSGoogle Scholar
  174. [174]
    M. Engelhardt, Strange quark contributions to nucleon mass and spin from lattice QCD, Phys. Rev. D 86 (2012) 114510 [arXiv:1210.0025] [INSPIRE].ADSGoogle Scholar
  175. [175]
    S. Dürr et al., Sigma term and strangeness content of octet baryons, Phys. Rev. D 85 (2012) 014509 [arXiv:1109.4265] [INSPIRE].ADSGoogle Scholar
  176. [176]
    ETM collaboration, S. Dinter et al., Sigma terms and strangeness content of the nucleon with N f = 2 + 1 + 1 twisted mass fermions, JHEP 08 (2012) 037 [arXiv:1202.1480] [INSPIRE].ADSGoogle Scholar
  177. [177]
    QCDSF collaboration, G.S. Bali et al., The strange and light quark contributions to the nucleon mass from Lattice QCD, Phys. Rev. D 85 (2012) 054502 [arXiv:1111.1600] [INSPIRE].ADSGoogle Scholar
  178. [178]
    G.S. Bali et al., Nucleon mass and sigma term from lattice QCD with two light fermion flavors, Nucl. Phys. B 866 (2013) 1 [arXiv:1206.7034] [INSPIRE].ADSGoogle Scholar
  179. [179]
    JLQCD collaboration, H. Ohki et al., Nucleon strange quark content from N f = 2 + 1 lattice QCD with exact chiral symmetry, Phys. Rev. D 87 (2013) 034509 [arXiv:1208.4185] [INSPIRE].ADSGoogle Scholar
  180. [180]
    C. Alexandrou et al., Strangeness of the nucleon from lattice quantum chromodynamics, arXiv:1309.7768 [INSPIRE].
  181. [181]
    MILC collaboration, W. Freeman and D. Toussaint, Intrinsic strangeness and charm of the nucleon using improved staggered fermions, Phys. Rev. D 88 (2013) 054503 [arXiv:1204.3866] [INSPIRE].ADSGoogle Scholar
  182. [182]
    XQCD collaboration, M. Gong et al., Strangeness and charmness content of the nucleon from overlap fermions on 2 + 1-flavor domain-wall fermion configurations, Phys. Rev. D 88 (2013) 014503 [arXiv:1304.1194] [INSPIRE].ADSGoogle Scholar
  183. [183]
    T. Bhattacharya et al., Nucleon charges and electromagnetic form factors from 2 + 1 + 1-flavor lattice QCD, Phys. Rev. D 89 (2014) 094502 [arXiv:1306.5435] [INSPIRE].ADSGoogle Scholar
  184. [184]
    M. González-Alonso and J.M. Camalich, Isospin breaking in the nucleon mass and the sensitivity of β decays to new physics, Phys. Rev. Lett. 112 (2014) 042501 [arXiv:1309.4434] [INSPIRE].ADSGoogle Scholar
  185. [185]
    N. Yamanaka, T. Sato and T. Kubota, R-parity violating supersymmetric contributions to the neutron beta decay, J. Phys. G 37 (2010) 055104 [arXiv:0908.1007] [INSPIRE].ADSGoogle Scholar
  186. [186]
    N. Yamanaka, T. Sato and T. Kubota, R-parity violating supersymmetric contributions to the neutron beta decay at the one-loop level, Phys. Rev. D 86 (2012) 075032 [arXiv:1209.0918] [INSPIRE].ADSGoogle Scholar
  187. [187]
    T. Bhattacharya et al., Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC, Phys. Rev. D 85 (2012) 054512 [arXiv:1110.6448] [INSPIRE].ADSGoogle Scholar
  188. [188]
    S. Aoki, M. Doui, T. Hatsuda and Y. Kuramashi, Tensor charge of the nucleon in lattice QCD, Phys. Rev. D 56 (1997) 433 [hep-lat/9608115] [INSPIRE].ADSGoogle Scholar
  189. [189]
    M. Göckeler et al., The Drell-Yan process and deep inelastic scattering from the lattice, Nucl. Phys. Proc. Suppl. B 53 (1997) 315 [hep-lat/9609039] [INSPIRE].ADSGoogle Scholar
  190. [190]
    S. Capitani et al., Towards a lattice calculation of Δq and δq, Nucl. Phys. Proc. Suppl. B 79 (1999) 548 [hep-ph/9905573] [INSPIRE].ADSGoogle Scholar
  191. [191]
    D. Dolgov et al., Moments of structure functions in full QCD, Nucl. Phys. Proc. Suppl. B 94 (2001) 303 [hep-lat/0011010] [INSPIRE].ADSGoogle Scholar
  192. [192]
    R.G. Edwards et al., Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea, PoS(LAT2006)121 [hep-lat/0610007] [INSPIRE].
  193. [193]
    H.-W. Lin, T. Blum, S. Ohta, S. Sasaki and T. Yamazaki, Nucleon structure with two flavors of dynamical domain-wall fermions, Phys. Rev. D 78 (2008) 014505 [arXiv:0802.0863] [INSPIRE].ADSGoogle Scholar
  194. [194]
    QCDSF/UKQCD collaboration, D. Pleiter et al., Nucleon form factors and structure functions from N f = 2 clover fermions, PoS(LATTICE 2010)153 [arXiv:1101.2326] [INSPIRE].
  195. [195]
    Y. Aoki et al., Nucleon isovector structure functions in (2 + 1)-flavor QCD with domain wall fermions, Phys. Rev. D 82 (2010) 014501 [arXiv:1003.3387] [INSPIRE].ADSGoogle Scholar
  196. [196]
    J.R. Green et al., Nucleon scalar and tensor charges from lattice QCD with light Wilson quarks, Phys. Rev. D 86 (2012) 114509 [arXiv:1206.4527] [INSPIRE].ADSGoogle Scholar
  197. [197]
    S.L. Adler et al., Renormalization constants for scalar, pseudoscalar and tensor currents, Phys. Rev. D 11 (1975) 3309 [INSPIRE].ADSGoogle Scholar
  198. [198]
    N. Yamanaka, T.M. Doi, S. Imai and H. Suganuma, Quark tensor charge and electric dipole moment within the Schwinger-Dyson formalism, Phys. Rev. D 88 (2013) 074036 [arXiv:1307.4208] [INSPIRE].ADSGoogle Scholar
  199. [199]
    T.P. Cheng and L.-F. Li, Axial anomaly and the proton spin, Phys. Rev. Lett. 62 (1989) 1441 [INSPIRE].ADSGoogle Scholar
  200. [200]
    COMPASS collaboration, M.G. Alekseev et al., Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering, Phys. Lett. B 693 (2010) 227 [arXiv:1007.4061] [INSPIRE].ADSGoogle Scholar
  201. [201]
    UCNA collaboration, B. Plaster et al., Measurement of the neutron β-asymmetry parameter A 0 with ultracold neutrons, Phys. Rev. C 86 (2012) 055501 [arXiv:1207.5887] [INSPIRE].ADSGoogle Scholar
  202. [202]
    G. Eichmann and C.S. Fischer, Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation, Eur. Phys. J. A 48 (2012) 9 [arXiv:1111.2614] [INSPIRE].ADSGoogle Scholar
  203. [203]
    N. Yamanaka, S. Imai, T.M. Doi and H. Suganuma, Quark scalar, axial and pseudoscalar charges in the Schwinger-Dyson formalism, Phys. Rev. D 89 (2014) 074017 [arXiv:1401.2852] [INSPIRE].ADSGoogle Scholar
  204. [204]
    E. Witten, Heavy quark contributions to deep inelastic scattering, Nucl. Phys. B 104 (1976) 445 [INSPIRE].ADSGoogle Scholar
  205. [205]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].ADSGoogle Scholar
  206. [206]
    T. Hatsuda and T. Kunihiro, Strange quark, heavy quarks and gluon contents of light hadrons, Nucl. Phys. B 387 (1992) 715 [INSPIRE].ADSGoogle Scholar
  207. [207]
    T. Hatsuda and T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian, Phys. Rept. 247 (1994) 221 [hep-ph/9401310] [INSPIRE].ADSGoogle Scholar
  208. [208]
    A.R. Zhitnitsky, Strange and charmed quarks in the nucleon, Phys. Rev. D 55 (1997) 3006 [hep-ph/9604314] [INSPIRE].ADSGoogle Scholar
  209. [209]
    M. Franz, M.V. Polyakov and K. Goeke, Heavy quark mass expansion and intrinsic charm in light hadrons, Phys. Rev. D 62 (2000) 074024 [hep-ph/0002240] [INSPIRE].ADSGoogle Scholar
  210. [210]
    S.M. Barr, T- and P-odd electron-nucleon interactions and the electric dipole moments of large atoms, Phys. Rev. D 45 (1992) 4148 [INSPIRE].ADSGoogle Scholar
  211. [211]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Sum rules, Nucl. Phys. B 147 (1979) 385 [INSPIRE].ADSGoogle Scholar
  212. [212]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics: applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].ADSGoogle Scholar
  213. [213]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. The ρ-ω mixing, Nucl. Phys. B 147 (1979) 519 [INSPIRE].ADSGoogle Scholar
  214. [214]
    P. Colangelo and A. Khodjamirian, QCD sum rules, a modern perspective, hep-ph/0010175 [INSPIRE].
  215. [215]
    B.L. Ioffe, QCD at low energies, Prog. Part. Nucl. Phys. 56 (2006) 232 [hep-ph/0502148] [INSPIRE].ADSGoogle Scholar
  216. [216]
    M. Pospelov, Best values for the CP odd meson nucleon couplings from supersymmetry, Phys. Lett. B 530 (2002) 123 [hep-ph/0109044] [INSPIRE].ADSGoogle Scholar
  217. [217]
    V.M. Belyaev and B.L. Ioffe, Determination of baryon and baryonic resonance masses from QCD sum rules. 1. Nonstrange baryons, Sov. Phys. JETP 56 (1982) 493 [Zh. Eksp. Teor. Fiz. 83 (1982) 876] [INSPIRE].
  218. [218]
    V.M. Belyaev and Y. Kogan, Calculation of quark condensate magnetic susceptibility by QCD sum rule method, Sov. J. Nucl. Phys. 40 (1984) 659 [Yad. Fiz. 40 (1984) 1035] [INSPIRE].
  219. [219]
    V.M. Khatsimovsky, I.B. Khriplovich and A.S. Yelkhovsky, Neutron electric dipole moment, T-odd nuclear forces and nature of CP violation, Annals Phys. 186 (1988) 1 [INSPIRE].ADSGoogle Scholar
  220. [220]
    X.-G. He and B. McKellar, Large contribution to the neutron electric dipole moment from a dimension-six four quark operator, Phys. Rev. D 47 (1993) 4055 [INSPIRE].ADSGoogle Scholar
  221. [221]
    X.-G. He and B. McKellar, Constraints on CP-violating four fermion interactions, Phys. Lett. B 390 (1997) 318 [hep-ph/9604394] [INSPIRE].ADSGoogle Scholar
  222. [222]
    C. Hamzaoui and M. Pospelov, The limits on CP odd four fermion operators containing strange quark field, Phys. Rev. D 60 (1999) 036003 [hep-ph/9901363] [INSPIRE].ADSGoogle Scholar
  223. [223]
    H. An, X. Ji and F. Xu, P-odd and CP-odd four-quark contributions to neutron EDM, JHEP 02 (2010) 043 [arXiv:0908.2420] [INSPIRE].ADSGoogle Scholar
  224. [224]
    J.F. Gunion and D. Wyler, Inducing a large neutron electric dipole moment via a quark chromoelectric dipole moment, Phys. Lett. B 248 (1990) 170 [INSPIRE].ADSGoogle Scholar
  225. [225]
    M. Chemtob, Nucleon electric dipole moment and gluonic content of light hadrons, Phys. Rev. D 45 (1992) 1649 [INSPIRE].ADSGoogle Scholar
  226. [226]
    M. Pospelov and A. Ritz, Theta induced electric dipole moment of the neutron via QCD sum rules, Phys. Rev. Lett. 83 (1999) 2526 [hep-ph/9904483] [INSPIRE].ADSGoogle Scholar
  227. [227]
    M. Pospelov and A. Ritz, Theta vacua, QCD sum rules and the neutron electric dipole moment, Nucl. Phys. B 573 (2000) 177 [hep-ph/9908508] [INSPIRE].ADSGoogle Scholar
  228. [228]
    M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D 63 (2001) 073015 [hep-ph/0010037] [INSPIRE].ADSGoogle Scholar
  229. [229]
    J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of neutron electric dipole moment with QCD sum rules, Phys. Rev. D 85 (2012) 114044 [arXiv:1204.2653] [INSPIRE].ADSGoogle Scholar
  230. [230]
    K. Fuyuto, J. Hisano and N. Nagata, Neutron electric dipole moment induced by strangeness revisited, Phys. Rev. D 87 (2013) 054018 [arXiv:1211.5228] [INSPIRE].ADSGoogle Scholar
  231. [231]
    S. Aoki and H. Fukaya, Chiral perturbation theory in a theta vacuum, Phys. Rev. D 81 (2010) 034022 [arXiv:0906.4852] [INSPIRE].ADSGoogle Scholar
  232. [232]
    K. Ottnad, B. Kubis, U.-G. Meissner and F.-K. Guo, New insights into the neutron electric dipole moment, Phys. Lett. B 687 (2010) 42 [arXiv:0911.3981] [INSPIRE].ADSGoogle Scholar
  233. [233]
    E. Mereghetti, W.H. Hockings and U. van Kolck, The effective chiral Lagrangian from the theta term, Annals Phys. 325 (2010) 2363 [arXiv:1002.2391] [INSPIRE].ADSMATHGoogle Scholar
  234. [234]
    J. de Vries, R.G.E. Timmermans, E. Mereghetti and U. van Kolck, The nucleon electric dipole form factor from dimension-six time-reversal violation, Phys. Lett. B 695 (2011) 268 [arXiv:1006.2304] [INSPIRE].ADSGoogle Scholar
  235. [235]
    E. Mereghetti, J. de Vries, W.H. Hockings, C.M. Maekawa and U. van Kolck, The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order, Phys. Lett. B 696 (2011) 97 [arXiv:1010.4078] [INSPIRE].ADSGoogle Scholar
  236. [236]
    F.-K. Guo and U.-G. Meissner, Baryon electric dipole moments from strong CP-violation, JHEP 12 (2012) 097 [arXiv:1210.5887] [INSPIRE].ADSGoogle Scholar
  237. [237]
    J. de Vries, E. Mereghetti, R.G.E. Timmermans and U. van Kolck, The effective chiral Lagrangian from dimension-six parity and time-reversal violation, Annals Phys. 338 (2013) 50 [arXiv:1212.0990] [INSPIRE].ADSGoogle Scholar
  238. [238]
    C.-Y. Seng, J. de Vries, E. Mereghetti, H.H. Patel and M. Ramsey-Musolf, Nucleon electric dipole moments and the isovector parity- and time-reversal-odd pion-nucleon coupling, Phys. Lett. B 736 (2014) 147 [arXiv:1401.5366] [INSPIRE].ADSGoogle Scholar
  239. [239]
    T. Akan, F.-K. Guo and U.-G. Meißner, Finite-volume corrections to the CP-odd nucleon matrix elements of the electromagnetic current from the QCD vacuum angle, Phys. Lett. B 736 (2014) 163 [arXiv:1406.2882] [INSPIRE].ADSGoogle Scholar
  240. [240]
    R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. B 91 (1980) 487] [INSPIRE].
  241. [241]
    A. Pich and E. de Rafael, Strong CP-violation in an effective chiral Lagrangian approach, Nucl. Phys. B 367 (1991) 313 [INSPIRE].ADSGoogle Scholar
  242. [242]
    V.M. Khatsymovsky and I.B. Khriplovich, CP odd interaction of light quarks and the neutron electric dipole moment, Phys. Lett. B 296 (1992) 219 [INSPIRE].ADSGoogle Scholar
  243. [243]
    B. Borasoy, The electric dipole moment of the neutron in chiral perturbation theory, Phys. Rev. D 61 (2000) 114017 [hep-ph/0004011] [INSPIRE].ADSGoogle Scholar
  244. [244]
    J. Hisano, K. Tsumura and M.J.S. Yang, QCD corrections to neutron electric dipole moment from dimension-six four-quark operators, Phys. Lett. B 713 (2012) 473 [arXiv:1205.2212] [INSPIRE].ADSGoogle Scholar
  245. [245]
    W. Dekens and J. de Vries, Renormalization group running of dimension-six sources of parity and time-reversal violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].ADSGoogle Scholar
  246. [246]
    S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].ADSGoogle Scholar
  247. [247]
    I.I.Y. Bigi and N.G. Uraltsev, Effective gluon operators and the dipole moment of the neutron, Sov. Phys. JETP 73 (1991) 198 [Zh. Eksp. Teor. Fiz. 100 (1991) 363] [INSPIRE].
  248. [248]
    I.I.Y. Bigi and N.G. Uraltsev, Induced multi-gluon couplings and the neutron electric dipole moment, Nucl. Phys. B 353 (1991) 321 [INSPIRE].ADSGoogle Scholar
  249. [249]
    M. Chemtob, Nucleon electric dipole moment and dimension 8 gluonic operators, Phys. Rev. D 48 (1993) 283 [INSPIRE].ADSGoogle Scholar
  250. [250]
    D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator and light gluinos, Phys. Rev. D 67 (2003) 015007 [hep-ph/0208257] [INSPIRE].ADSGoogle Scholar
  251. [251]
    C.-P. Liu and R.G.E. Timmermans, P- and T-odd two-nucleon interaction and the deuteron electric dipole moment, Phys. Rev. C 70 (2004) 055501 [nucl-th/0408060] [INSPIRE].ADSGoogle Scholar
  252. [252]
    I.R. Afnan and B.F. Gibson, Model dependence of the 2H electric dipole moment, Phys. Rev. C 82 (2010) 064002 [arXiv:1011.4968] [INSPIRE].ADSGoogle Scholar
  253. [253]
    J. de Vries, E. Mereghetti, R.G.E. Timmermans and U. van Kolck, Parity- and time-reversal-violating form factors of the deuteron, Phys. Rev. Lett. 107 (2011) 091804 [arXiv:1102.4068] [INSPIRE].ADSGoogle Scholar
  254. [254]
    Y.-H. Song, R. Lazauskas and V. Gudkov, Nuclear electric dipole moment of three-body system, Phys. Rev. C 87 (2013) 015501 [arXiv:1211.3762] [INSPIRE].ADSGoogle Scholar
  255. [255]
    I. Stetcu, C.-P. Liu, J.L. Friar, A.C. Hayes and P. Navratil, Nuclear electric dipole moment of 3 He, Phys. Lett. B 665 (2008) 168 [arXiv:0804.3815] [INSPIRE].ADSGoogle Scholar
  256. [256]
    J. de Vries et al., Electric dipole moments of light nuclei from chiral effective field theory, Phys. Rev. C 84 (2011) 065501 [arXiv:1109.3604] [INSPIRE].ADSGoogle Scholar
  257. [257]
    L.I. Schiff, Measurability of nuclear electric dipole moments, Phys. Rev. 132 (1963) 2194 [INSPIRE].ADSMathSciNetGoogle Scholar
  258. [258]
    T.E.O. Ericson, B. Loiseau and A.W. Thomas, Determination of the pion nucleon coupling constant and scattering lengths, Phys. Rev. C 66 (2002) 014005 [hep-ph/0009312] [INSPIRE].ADSGoogle Scholar
  259. [259]
    N. Yoshinaga, K. Higashiyama and R. Arai, Shell model estimate of nuclear electric dipole moments, Prog. Theor. Phys. 124 (2010) 1115.ADSGoogle Scholar
  260. [260]
    N. Yoshinaga, K. Higashiyama, R. Arai and E. Teruya, Nuclear Schiff moments for the lowest 1/2+ states in Xe isotopes, Phys. Rev. C 87 (2013) 044332 [INSPIRE].ADSGoogle Scholar
  261. [261]
    S. Ban, J. Dobaczewski, J. Engel and A. Shukla, Fully self-consistent calculations of nuclear Schiff moments, Phys. Rev. C 82 (2010) 015501 [arXiv:1003.2598] [INSPIRE].ADSGoogle Scholar
  262. [262]
    J. Dobaczewski and J. Engel, Nuclear time-reversal violation and the Schiff moment of 225 Ra, Phys. Rev. Lett. 94 (2005) 232502 [nucl-th/0503057] [INSPIRE].ADSGoogle Scholar
  263. [263]
    J. Dobaczewski et al., Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VI) HFODD (v2.38j): a new version of the program, Comput. Phys. Commun. 180 (2009) 2361 [arXiv:0903.1020] [INSPIRE].ADSMathSciNetGoogle Scholar
  264. [264]
    P.G. Reinhard et al., Shape coexistence and the effective nucleon-nucleon interaction, Phys. Rev. C 60 (1999) 014316 [nucl-th/9903037] [INSPIRE].ADSGoogle Scholar
  265. [265]
    J. Bartel, P. Quentin, M. Brack, C. Guet and H.-B. Hakansson, Towards a better parametrisation of Skyrme-like effective forces: a critical study of the SkM force, Nucl. Phys. A 386 (1982) 79 [INSPIRE].ADSGoogle Scholar
  266. [266]
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities. 2. Nuclei far from stablities, Nucl. Phys. A 635 (1998) 231 [INSPIRE].ADSGoogle Scholar
  267. [267]
    M. Beiner, H. Flocard, N. van Giai and P. Quentin, Nuclear ground state properties and selfconsistent calculations with the Skyrme interactions. 1. Spherical description, Nucl. Phys. A 238 (1975) 29 [INSPIRE].ADSGoogle Scholar
  268. [268]
    V.A. Dzuba and V.V. Flambaum, Calculation of the (T,P)-odd electric dipole moment of thallium, Phys. Rev. A 80 (2009) 062509 [arXiv:0909.0308] [INSPIRE].ADSGoogle Scholar
  269. [269]
    T.M.R. Byrnes, V.A. Dzuba, V.V. Flambaum and D.W. Murray, Enhancement factor for the electron electric dipole moment in francium and gold atoms, Phys. Rev. A 59 (1999) 3082 [physics/9811044].ADSGoogle Scholar
  270. [270]
    B.M. Roberts, V.A. Dzuba and V.V. Flambaum, Double-core-polarization contribution to atomic parity-nonconservation and electric-dipole-moment calculations, Phys. Rev. A 88 (2013) 042507 [arXiv:1309.3371] [INSPIRE].ADSGoogle Scholar
  271. [271]
    V.A. Dzuba, V.V. Flambaum and C. Harabati, Relations between matrix elements of different weak interactions and interpretation of the parity-nonconserving and electron electric-dipole-moment measurements in atoms and molecules, Phys. Rev. A 85 (2012) 029901 [arXiv:1109.6082].ADSGoogle Scholar
  272. [272]
    Z.W. Liu and H.P. Kelly, Analysis of atomic electric dipole moment in thallium by all-order calculations in many-body perturbation theory, Phys. Rev. A 45 (1992) R4210.ADSGoogle Scholar
  273. [273]
    S.G. Porsev, M.S. Safronova and M.G. Kozlov, Electric dipole moment enhancement factor of thallium, Phys. Rev. Lett. 108 (2012) 173001 [arXiv:1201.5615] [INSPIRE].ADSGoogle Scholar
  274. [274]
    D. Mukherjee, B.K. Sahoo, H.S. Nataraj and B.P. Das, Relativistic Coupled Cluster (RCC) computation of the electric dipole moment enhancement factor of francium due to the violation of time reversal symmetry, J. Phys. Chem. A 113 (2009) 12549.Google Scholar
  275. [275]
    M.G. Kozlov and V.F. Ezhov, Enhancement of the electric dipole moment of the electron in the YbF molecule, Phys. Rev. A 49 (1994) 4502 [INSPIRE].ADSGoogle Scholar
  276. [276]
    M.K. Nayak and R.K. Chaudhuri, Ab initio calculation of P,T-odd effects in YbF molecule, Chem. Phys. Lett. 419 (2006) 191.ADSGoogle Scholar
  277. [277]
    M.K. Nayak and R.K. Chaudhuri, Calculation of the electron-nucleus scalar-pseudoscalar interaction constant W S for YbF and BaF molecules: a perturbative approach, Phys. Rev. A 78 (2008) 012506.ADSGoogle Scholar
  278. [278]
    M.K. Nayak and R.K. Chaudhuri, Ab initio calculation of the electron-nucleus scalar-pseudoscalar interaction constant in heavy polar molecules, Phys. Rev. A 75 (2007) 022510.ADSGoogle Scholar
  279. [279]
    V.A. Dzuba, V.V. Flambaum and S.G. Porsev, Calculation of P,T-odd electric dipole moments for diamagnetic atoms 129 Xe, 171 Yb, 199 Hg, 211 Rn and 225 Ra, Phys. Rev. A 80 (2009) 032120 [arXiv:0906.5437] [INSPIRE].ADSGoogle Scholar
  280. [280]
    K.V.P. Latha and P.R. Amjith, Electric dipole moments of atomic Xe, Ra, and Yb with core-polarization effects, Phys. Rev. A 87 (2013) 022509.ADSGoogle Scholar
  281. [281]
    V.V. Flambaum and I.B. Khriplovich, New limits on the electron dipole moment and T nonconserving electron-nucleon interaction, Sov. Phys. JETP 62 (1985) 872 [Zh. Eksp. Teor. Fiz. 89 (1985) 1505] [INSPIRE].
  282. [282]
    V.D. Barger, G.F. Giudice and T. Han, Some new aspects of supersymmetry R-parity violating interactions, Phys. Rev. D 40 (1989) 2987 [INSPIRE].ADSGoogle Scholar
  283. [283]
    Y. Kao and T. Takeuchi, Constraints on R-parity violation from recent Belle/Babar data, arXiv:0909.0042 [INSPIRE].
  284. [284]
    Y. Kao and T. Takeuchi, Single-coupling bounds on R-parity violating supersymmetry, an update, arXiv:0910.4980 [INSPIRE].
  285. [285]
    K. Agashe and M. Graesser, R-parity violation in flavor changing neutral current processes and top quark decays, Phys. Rev. D 54 (1996) 4445 [hep-ph/9510439] [INSPIRE].ADSGoogle Scholar
  286. [286]
    D. Choudhury and P. Roy, New constraints on lepton nonconserving R-parity violating couplings, Phys. Lett. B 378 (1996) 153 [hep-ph/9603363] [INSPIRE].ADSGoogle Scholar
  287. [287]
    N.G. Deshpande, D.K. Ghosh and X.-G. He, Constraints on new physics from \( K\to \pi \nu \overline{\nu} \), Phys. Rev. D 70 (2004) 093003 [hep-ph/0407021] [INSPIRE].ADSGoogle Scholar
  288. [288]
    A. Deandrea, J. Welzel and M. Oertel, \( K\to \pi \nu \overline{\nu} \) from standard to new physics, JHEP 10 (2004) 038 [hep-ph/0407216] [INSPIRE].ADSGoogle Scholar
  289. [289]
    BNL-E949 collaboration, A.V. Artamonov et al., Study of the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region 140 < P π < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].ADSGoogle Scholar
  290. [290]
    E949 and E787 collaborations, S. Adler et al., Measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. D 77 (2008) 052003 [arXiv:0709.1000] [INSPIRE].ADSGoogle Scholar
  291. [291]
    E787 collaboration, S. Adler et al., Further search for the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region P < 195 MeV/c, Phys. Rev. D 70 (2004) 037102 [hep-ex/0403034] [INSPIRE].ADSGoogle Scholar
  292. [292]
    E787 collaboration, S.S. Adler et al., Search for the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region P π < 195 MeV/c, Phys. Lett. B 537 (2002) 211 [hep-ex/0201037] [INSPIRE].ADSGoogle Scholar
  293. [293]
    J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( K->\pi \nu \overset{-}{nu} \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].ADSGoogle Scholar
  294. [294]
    J.R. Ellis, G. Gelmini, C. Jarlskog, G.G. Ross and J.W.F. Valle, Phenomenology of supersymmetry with broken R-parity, Phys. Lett. B 150 (1985) 142 [INSPIRE].ADSGoogle Scholar
  295. [295]
    H.K. Dreiner and G.G. Ross, R-parity violation at hadron colliders, Nucl. Phys. B 365 (1991) 597 [INSPIRE].ADSGoogle Scholar
  296. [296]
    ATLAS collaboration, P. Jackson, Search for R-parity violating supersymmetry with the ATLAS detector, PoS(EPS-HEP2011)264 [arXiv:1112.0369] [INSPIRE].
  297. [297]
    CMS collaboration, A. Cakir, Search for R-parity violating supersymmetry at the CMS experiment, PoS(EPS-HEP 2013)264 [arXiv:1310.3598] [INSPIRE].
  298. [298]
    S. Biswas, D. Ghosh and S. Niyogi, Multi-leptons and top-jets in the hunt for gluinos in R-parity violating supersymmetry, JHEP 06 (2014) 012 [arXiv:1312.0549] [INSPIRE].ADSGoogle Scholar
  299. [299]
    K.S. Babu and R.N. Mohapatra, New vector-scalar contributions to neutrinoless double beta decay and constraints on R-parity violation, Phys. Rev. Lett. 75 (1995) 2276 [hep-ph/9506354] [INSPIRE].ADSGoogle Scholar
  300. [300]
    M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, New constraints on R-parity broken supersymmetry from neutrinoless double beta decay, Phys. Rev. Lett. 75 (1995) 17 [INSPIRE].ADSGoogle Scholar
  301. [301]
    A. Faessler, S. Kovalenko, F. Simkovic and J. Schwieger, Dominance of pion exchange in R-parity violating supersymmetry contributions to neutrinoless double beta decay, Phys. Rev. Lett. 78 (1997) 183 [hep-ph/9612357] [INSPIRE].ADSGoogle Scholar
  302. [302]
    M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, R-parity conserving supersymmetry, neutrino mass and neutrinoless double beta decay, Phys. Rev. D 57 (1998) 1947 [hep-ph/9707207] [INSPIRE].ADSGoogle Scholar
  303. [303]
    A. Faessler, T. Gutsche, S. Kovalenko and F. Simkovic, Pion dominance in RPV SUSY induced neutrinoless double beta decay, Phys. Rev. D 77 (2008) 113012 [arXiv:0710.3199] [INSPIRE].ADSGoogle Scholar
  304. [304]
    Y. Grossman, Z. Ligeti and E. Nardi, New limit on inclusive \( B\to {X}_s\overline{\nu}\nu \) decay and constraints on new physics, Nucl. Phys. B 465 (1996) 369 [Erratum ibid. B 480 (1996) 753] [hep-ph/9510378] [INSPIRE].
  305. [305]
    J. Murata et al., Test of time reversal symmetry using polarized 8 Li at TRIUMF-ISAC, J. Phys. Conf. Ser. 312 (2011) 102011 [INSPIRE].ADSGoogle Scholar
  306. [306]
    N. Severijns and O. Naviliat-Cuncic, Symmetry tests in nuclear beta decay, Ann. Rev. Nucl. Part. Sci. 61 (2011) 23 [INSPIRE].ADSGoogle Scholar
  307. [307]
    P. Herczeg, Beta decay beyond the standard model, Prog. Part. Nucl. Phys. 46 (2001) 413 [INSPIRE].ADSGoogle Scholar
  308. [308]
    N. Severijns and O. Naviliat-Cuncic, Structure and symmetries of the weak interaction in nuclear beta decay, Phys. Scripta T 152 (2013) 014018 [INSPIRE].ADSGoogle Scholar
  309. [309]
    P. Herczeg and I.B. Khriplovich, Time reversal violation in beta decay in the standard model, Phys. Rev. D 56 (1997) 80 [INSPIRE].ADSGoogle Scholar
  310. [310]
    J.D. Jackson, S.B. Treiman and H.W. Wyld, Possible tests of time reversal invariance in beta decay, Phys. Rev. 106 (1957) 517 [INSPIRE].ADSGoogle Scholar
  311. [311]
    J. Jackson, S. Treiman and H. Wyld, Coulomb corrections in allowed beta transitions, Nucl. Phys. 4 (1957) 206.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.iTHES Research Group, RIKENWakoJapan
  2. 2.Department of PhysicsOsaka UniversityToyonakaJapan
  3. 3.CELAS, Osaka UniversityToyonakaJapan
  4. 4.Kavli IPMU (WPI)the University of TokyoKashiwa CityJapan

Personalised recommendations