Journal of High Energy Physics

, 2014:95 | Cite as

Constraints on chiral operators in \( \mathcal{N}=2 \) SCFTs

  • Matthew Buican
  • Takahiro Nishinaka
  • Constantinos Papageorgakis
Open Access
Regular Article - Theoretical Physics

Abstract

We study certain higher-spin chiral operators in \( \mathcal{N}=2 \) superconformal field theories (SCFTs). In Lagrangian theories, or in theories related to Lagrangian theories by generalized Argyres-Seiberg-Gaiotto duality (“type A” theories in our classification), we give a simple superconformal representation theory proof that such operators do not exist. This argument is independent of the details of the superconformal index. We then use the index to show that if a theory is not of type A but has an \( \mathcal{N}=2 \)-preserving deformation by a relevant operator that takes it to a theory of this type in the infrared, the ultraviolet theory cannot have these higher-spin operators either. As an application of this discussion, we give a simple prescription to extract the 2ac conformal anomaly directly from the superconformal index. We also comment on how this procedure works in the holographic limit.

Keywords

Extended Supersymmetry Conformal and W Symmetry Anomalies in Field and String Theories 

References

  1. [1]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. Beem et al., Infinite chiral symmetry in four dimensions, arXiv:1312.5344 [INSPIRE].
  4. [4]
    C. Beem, L. Rastelli and B.C. van Rees, W symmetry in six dimensions, arXiv:1404.1079 [INSPIRE].
  5. [5]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4D/2D correspondences, arXiv:1006.3435 [INSPIRE].
  10. [10]
    D. Xie, General Argyres-Douglas theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    V.K. Dobrev and V.B. Petkova, All positive energy unitary irreducible representations of extended conformal supersymmetry, Phys. Lett. B 162 (1985) 127 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    V.K. Dobrev and V.B. Petkova, On the group theoretical approach to extended conformal supersymmetry: classification of multiplets, Lett. Math. Phys. 9 (1985) 287 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    V.K. Dobrev and V.B. Petkova, Group theoretical approach to extended conformal supersymmetry: function space realizations and invariant differential operators, Fortsch. Phys. 35 (1987) 537 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    M. Buican, Minimal distances between SCFTs, JHEP 01 (2014) 155 [arXiv:1311.1276] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in superconformal theories, JHEP 09 (2011) 071 [arXiv:1107.1721] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    O. Aharony et al., The Hagedorn-deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  26. [26]
    S. Nawata, Localization of N = 4 superconformal field theory on S 1 × S 3 and index, JHEP 11 (2011) 144 [arXiv:1104.4470] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The geometry of supersymmetric partition functions, JHEP 01 (2014) 124 [arXiv:1309.5876] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  28. [28]
    B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123 [arXiv:1405.5144] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, JHEP 01 (2013) 022 [arXiv:1207.3577] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    A. Hanany and C. Romelsberger, Counting BPS operators in the chiral ring of N = 2 supersymmetric gauge theories or N = 2 braine surgery, Adv. Theor. Math. Phys. 11 (2007) 1091 [hep-th/0611346] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert series of the one instanton moduli space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E(n) global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    K. Kodaira, On compact analytic surfaces. II, Ann. Math. 77 (1963) 563.CrossRefMATHGoogle Scholar
  34. [34]
    K. Kodaira, On compact analytic surfaces. III, Ann. Math. 78 (1963) 1.CrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    P.C. Argyres and J.R. Wittig, Infinite coupling duals of N = 2 gauge theories and new rank 1 superconformal field theories, JHEP 01 (2008) 074 [arXiv:0712.2028] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    A.D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [INSPIRE].
  37. [37]
    A.A. Ardehali, J.T. Liu and P. Szepietowski, 1/N 2 corrections to the holographic Weyl anomaly, JHEP 01 (2014) 002 [arXiv:1310.2611] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Arabi Ardehali, J.T. Liu and P. Szepietowski, The shortened KK spectrum of IIB supergravity on Y p,q, JHEP 02 (2014) 064 [arXiv:1311.4550] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in D = 4 and D = 6, arXiv:1407.6061 [INSPIRE].
  40. [40]
    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometric integrals andt Hooft anomaly matching conditions, JHEP 06 (2012) 016 [arXiv:1203.5677] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  43. [43]
    G.W. Moore and E. Witten, Integration over the u plane in Donaldson theory, Adv. Theor. Math. Phys. 1 (1997) 298 [hep-th/9709193] [INSPIRE].MATHMathSciNetGoogle Scholar
  44. [44]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477-478] [hep-th/9906070] [INSPIRE].
  46. [46]
    V.I. Arnold, S.M. Gusein-Zade and A.N. Varěncko, Singularities of differentiable maps, Birkhäuser, Boston U.S.A. (1988).CrossRefMATHGoogle Scholar
  47. [47]
    D. Xie and P. Zhao, Central charges and RG flow of strongly-coupled N = 2 theory, JHEP 03 (2013) 006 [arXiv:1301.0210] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Matthew Buican
    • 1
  • Takahiro Nishinaka
    • 1
  • Constantinos Papageorgakis
    • 1
    • 2
  1. 1.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.
  2. 2.CRST and School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations