# Infrared consistency and the weak gravity conjecture

- 281 Downloads
- 27 Citations

## Abstract

The weak gravity conjecture (WGC) asserts that an Abelian gauge theory coupled to gravity is inconsistent unless it contains a particle of charge *q* and mass *m* such that *q*≥*m/m* _{Pl}. This criterion is obeyed by all known ultraviolet completions and is needed to evade pathologies from stable black hole remnants. In this paper, we explore the WGC from the perspective of low-energy effective field theory. Below the charged particle threshold, the effective action describes a photon and graviton interacting via higher-dimension operators. We derive infrared consistency conditions on the parameters of the effective action using *i* ) analyticity of light-by-light scattering, *ii* ) unitarity of the dynamics of an arbitrary ultraviolet completion, and *iii* ) absence of superluminality and causality violation in certain non-trivial backgrounds. For convenience, we begin our analysis in three spacetime dimensions, where gravity is non-dynamical but has a physical effect on photon-photon interactions. We then consider four dimensions, where propagating gravity substantially complicates all of our arguments, but bounds can still be derived. Operators in the effective action arise from two types of diagrams: those that involve electromagnetic interactions (parameterized by a charge-to-mass ratio *q/m*) and those that do not (parameterized by a coefficient γ). Infrared consistency implies that *q/m* is bounded from below for small γ.

## Keywords

Scattering Amplitudes Electromagnetic Processes and Properties Gauge Symmetry Classical Theories of Gravity## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa,
*The String landscape, black holes and gravity as the weakest force*,*JHEP***06**(2007) 060 [hep-th/0601001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [2]
- [3]
- [4]R. Bousso,
*The Holographic principle*,*Rev. Mod. Phys.***74**(2002) 825 [hep-th/0203101] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar - [5]S.B. Giddings,
*Black holes and massive remnants*,*Phys. Rev.***D 46**(1992) 1347 [hep-th/9203059] [INSPIRE].ADSGoogle Scholar - [6]A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi,
*Causality, analyticity and an IR obstruction to UV completion*,*JHEP***10**(2006) 014 [hep-th/0602178] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [7]W. Heisenberg and H. Euler,
*Consequences of Dirac*’*s theory of positrons*,*Z. Phys.***98**(1936) 714 [physics/0605038] [INSPIRE].ADSCrossRefGoogle Scholar - [8]J.S. Schwinger,
*On gauge invariance and vacuum polarization*,*Phys. Rev.***82**(1951) 664 [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar - [9]V. Weisskopf,
*The electrodynamics of the vacuum based on the quantum theory of the electron*,*Kong. Dans. Vid. Selsk. Math-fys. Medd.***XIV**(1936) 3.Google Scholar - [10]X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov,
*Causality Constraints on Corrections to the Graviton Three-Point Coupling*, arXiv:1407.5597 [INSPIRE]. - [11]S. Deser, R. Jackiw and G. ’t Hooft,
*Three-Dimensional Einstein Gravity: Dynamics of Flat Space*,*Annals Phys.***152**(1984) 220 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [12]A. Ritz and R. Delbourgo,
*The Low-energy effective Lagrangian for photon interactions in any dimension*,*Int. J. Mod. Phys.***A 11**(1996) 253 [hep-th/9503160] [INSPIRE].ADSCrossRefGoogle Scholar - [13]I.T. Drummond and S.J. Hathrell,
*QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons*,*Phys. Rev.***D 22**(1980) 343 [INSPIRE].ADSMathSciNetGoogle Scholar - [14]M. Chaichian and J. Fischer,
*Higher Dimensional Space-time and Unitarity Bound on the Scattering Amplitude*,*Nucl. Phys.***B 303**(1988) 557 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [15]M. Chaichian, J. Fischer and Y. Vernov,
*Generalization of the Froissart-Martin bounds to scattering in a space-time of general dimension*,*Nucl. Phys.***B 383**(1992) 151 [INSPIRE].ADSCrossRefGoogle Scholar - [16]S.B. Giddings and M. Srednicki,
*High-energy gravitational scattering and black hole resonances*,*Phys. Rev.***D 77**(2008) 085025 [arXiv:0711.5012] [INSPIRE].ADSGoogle Scholar - [17]S.B. Giddings and R.A. Porto,
*The Gravitational S-matrix*,*Phys. Rev.***D 81**(2010) 025002 [arXiv:0908.0004] [INSPIRE].ADSGoogle Scholar - [18]
- [19]K. Hinterbichler,
*Theoretical Aspects of Massive Gravity*,*Rev. Mod. Phys.***84**(2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar - [20]H. Alnes, F. Ravndal and I.K. Wehus,
*Black-body radiation in extra dimensions*,*J. Phys.***A 40**(2007) 14309 [quant-ph/0506131] [INSPIRE].ADSMathSciNetGoogle Scholar - [21]T.R. Cardoso and A.S. de Castro,
*The Blackbody radiation in D-dimensional universes*,*Rev. Bras. Ens. Fis.***27**(2005) 559 [quant-ph/0510002] [INSPIRE].CrossRefGoogle Scholar - [22]A.A. Garcia and C. Campuzano,
*All static circularly symmetric perfect fluid solutions of (2+1) gravity*,*Phys. Rev.***D 67**(2003) 064014 [gr-qc/0211014] [INSPIRE].ADSMathSciNetGoogle Scholar - [23]R. Tolman,
*The Theory of the Relativity of Motion*, University of California Press, U.S.A. (1917).zbMATHGoogle Scholar - [24]G.A. Benford, D.L. Book and W.A. Newcomb,
*The tachyonic antitelephone*,*Phys. Rev.***D 2**(1970) 263 [INSPIRE].ADSGoogle Scholar - [25]D. Bohm,
*The Special Theory of Relativity*, Taylor & Francis, U.K. (2012).Google Scholar - [26]S.M. Carroll, E. Farhi, A.H. Guth and K.D. Olum,
*Energy momentum restrictions on the creation of Gott time machines*,*Phys. Rev.***D 50**(1994) 6190 [gr-qc/9404065] [INSPIRE].ADSMathSciNetGoogle Scholar - [27]S. Deser and R. Jackiw,
*Time travel?*,*Comments Nucl. Part. Phys.***20**(1992) 337 [hep-th/9206094] [INSPIRE].Google Scholar - [28]S. Deser, R. Jackiw and G. ’t Hooft,
*Physical cosmic strings do not generate closed timelike curves*,*Phys. Rev. Lett.***68**(1992) 267 [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar - [29]G.V. Dunne,
*Heisenberg-Euler effective Lagrangians: Basics and extensions*, in M. Shifman, A. Vainshtein, J. Wheater and I. Kogan eds.,*From Fields to Strings: Circumnavigating Theoretical Physics: Ian Kogan Memorial Collection***1**, World Scientific (2005), pp. 445-522. [hep-th/0406216] [INSPIRE]. - [30]F. Bastianelli, J.M. Davila and C. Schubert,
*Gravitational corrections to the Euler-Heisenberg Lagrangian*,*JHEP***03**(2009) 086 [arXiv:0812.4849] [INSPIRE].ADSCrossRefGoogle Scholar - [31]F. Bastianelli, O. Corradini, J.M. Davila and C. Schubert,
*On the low energy limit of one loop photon-graviton amplitudes*,*Phys. Lett.***B 716**(2012) 345 [arXiv:1202.4502] [INSPIRE].ADSCrossRefGoogle Scholar - [32]S. Deser and P. van Nieuwenhuizen,
*One Loop Divergences of Quantized Einstein-Maxwell Fields*,*Phys. Rev.***D 10**(1974) 401 [INSPIRE].ADSGoogle Scholar - [33]B. Bellazzini, L. Martucci and R. Torre,
*Symmetries, Sum Rules and Constraints on Effective Field Theories*,*JHEP***09**(2014) 100 [arXiv:1405.2960] [INSPIRE].ADSCrossRefGoogle Scholar - [34]S. Dimopoulos and G.L. Landsberg,
*Black holes at the LHC*,*Phys. Rev. Lett.***87**(2001) 161602 [hep-ph/0106295] [INSPIRE].ADSCrossRefGoogle Scholar - [35]J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein,
*Falsifying Models of New Physics via WW Scattering*,*Phys. Rev. Lett.***98**(2007) 041601 [hep-ph/0604255] [INSPIRE].ADSCrossRefGoogle Scholar - [36]R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan,
*The Pomeron and gauge/string duality*,*JHEP***12**(2007) 005 [hep-th/0603115] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [37]C. Cheung, D. O’Connell and B. Wecht,
*BCFW Recursion Relations and String Theory*,*JHEP***09**(2010) 052 [arXiv:1002.4674] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [38]S. Weinberg,
*Feynman rules for any spin*,*Phys. Rev.***133**(1964) B1318 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [39]S. Weinberg,
*Feynman rules for any spin. III*,*Phys. Rev.***181**(1969) 1893 [INSPIRE].ADSCrossRefGoogle Scholar - [40]M. Schwartz,
*Quantum Field Theory and the Standard Model*, Cambridge University Press, U.K. (2013).Google Scholar - [41]C. Misner, K. Thorne and J. Wheeler,
*Gravitation*, W.H. Freeman, U.K. (1973).Google Scholar - [42]R.D. Daniels and G.M. Shore, ‘
*Faster than light*’*photons and charged black holes*,*Nucl. Phys.***B 425**(1994) 634 [hep-th/9310114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [43]
- [44]T.J. Hollowood and G.M. Shore,
*The Causal Structure of QED in Curved Spacetime: Analyticity and the Refractive Index*,*JHEP***12**(2008) 091 [arXiv:0806.1019] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [45]J.B. Hartle and S.W. Hawking,
*Path Integral Derivation of Black Hole Radiance*,*Phys. Rev.***D 13**(1976) 2188 [INSPIRE].ADSGoogle Scholar - [46]M. Visser,
*Gravitational vacuum polarization. 1: Energy conditions in the Hartle-Hawking vacuum*,*Phys. Rev.***D 54**(1996) 5103 [gr-qc/9604007] [INSPIRE].ADSMathSciNetGoogle Scholar - [47]L. Susskind, L. Thorlacius and J. Uglum,
*The Stretched horizon and black hole complementarity*,*Phys. Rev.***D 48**(1993) 3743 [hep-th/9306069] [INSPIRE].ADSMathSciNetGoogle Scholar - [48]P. Hayden and J. Preskill,
*Black holes as mirrors: Quantum information in random subsystems*,*JHEP***09**(2007) 120 [arXiv:0708.4025] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [49]M.D. Kruskal,
*Maximal extension of Schwarzschild metric*,*Phys. Rev.***119**(1960) 1743 [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar - [50]R.W. Fuller and J.A. Wheeler,
*Causality and Multiply Connected Space-Time*,*Phys. Rev.***128**(1962) 919 [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar - [51]K.S. Thorne,
*Closed timelike curves*, in R. Gleiser, C. Kozameh and O. Moreschi eds.,*General Relativity and Gravitation 1992*, Taylor & Francis, U.K. (1993), pp. 295-316.Google Scholar - [52]M.S. Morris, K.S. Thorne and U. Yurtsever,
*Wormholes, Time Machines and the Weak Energy Condition*,*Phys. Rev. Lett.***61**(1988) 1446 [INSPIRE].ADSCrossRefGoogle Scholar - [53]J.M. Maldacena,
*The Large-N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar - [54]O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz,
*Large-N field theories, string theory and gravity*,*Phys. Rept.***323**(2000) 183 [hep-th/9905111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [55]R. Sundrum,
*Gravitational Lorentz Violation and Superluminality via AdS/CFT Duality*,*Phys. Rev.***D 77**(2008) 086002 [arXiv:0708.1871] [INSPIRE].ADSGoogle Scholar - [56]M. Van Raamsdonk,
*Building up spacetime with quantum entanglement*,*Gen. Rel. Grav.***42**(2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [57]S. Ryu and T. Takayanagi,
*Holographic derivation of entanglement entropy from AdS/CFT*,*Phys. Rev. Lett.***96**(2006) 181602 [hep-th/0603001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [58]S. Leichenauer,
*Disrupting Entanglement of Black Holes*,*Phys. Rev.***D 90**(2014) 046009 [arXiv:1405.7365] [INSPIRE].ADSGoogle Scholar - [59]J. Maldacena and L. Susskind,
*Cool horizons for entangled black holes*,*Fortsch. Phys.***61**(2013) 781 [arXiv:1306.0533] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [60]C. Cheung and G.N. Remmen,
*Naturalness and the Weak Gravity Conjecture*,*Phys. Rev. Lett.***113**(2014) 051601 [arXiv:1402.2287] [INSPIRE].ADSCrossRefGoogle Scholar - [61]S.L. Dubovsky and S.M. Sibiryakov,
*Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind*,*Phys. Lett.***B 638**(2006) 509 [hep-th/0603158] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar - [62]C. Fronsdal,
*Massless Fields with Integer Spin*,*Phys. Rev.***D 18**(1978) 3624 [INSPIRE].ADSGoogle Scholar - [63]L.P.S. Singh and C.R. Hagen,
*Lagrangian formulation for arbitrary spin. 1. The boson case*,*Phys. Rev.***D 9**(1974) 898 [INSPIRE].ADSGoogle Scholar

## Copyright information

**Open Access**This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.