Infrared consistency and the weak gravity conjecture

Abstract

The weak gravity conjecture (WGC) asserts that an Abelian gauge theory coupled to gravity is inconsistent unless it contains a particle of charge q and mass m such that qm/m Pl. This criterion is obeyed by all known ultraviolet completions and is needed to evade pathologies from stable black hole remnants. In this paper, we explore the WGC from the perspective of low-energy effective field theory. Below the charged particle threshold, the effective action describes a photon and graviton interacting via higher-dimension operators. We derive infrared consistency conditions on the parameters of the effective action using i ) analyticity of light-by-light scattering, ii ) unitarity of the dynamics of an arbitrary ultraviolet completion, and iii ) absence of superluminality and causality violation in certain non-trivial backgrounds. For convenience, we begin our analysis in three spacetime dimensions, where gravity is non-dynamical but has a physical effect on photon-photon interactions. We then consider four dimensions, where propagating gravity substantially complicates all of our arguments, but bounds can still be derived. Operators in the effective action arise from two types of diagrams: those that involve electromagnetic interactions (parameterized by a charge-to-mass ratio q/m) and those that do not (parameterized by a coefficient γ). Infrared consistency implies that q/m is bounded from below for small γ.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  2. [2]

    L. Susskind, Trouble for remnants, hep-th/9501106 [INSPIRE].

  3. [3]

    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].

  4. [4]

    R. Bousso, The Holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  5. [5]

    S.B. Giddings, Black holes and massive remnants, Phys. Rev. D 46 (1992) 1347 [hep-th/9203059] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. [7]

    W. Heisenberg and H. Euler, Consequences of Diracs theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  9. [9]

    V. Weisskopf, The electrodynamics of the vacuum based on the quantum theory of the electron, Kong. Dans. Vid. Selsk. Math-fys. Medd. XIV (1936) 3.

    Google Scholar 

  10. [10]

    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, arXiv:1407.5597 [INSPIRE].

  11. [11]

    S. Deser, R. Jackiw and G. ’t Hooft, Three-Dimensional Einstein Gravity: Dynamics of Flat Space, Annals Phys. 152 (1984) 220 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  12. [12]

    A. Ritz and R. Delbourgo, The Low-energy effective Lagrangian for photon interactions in any dimension, Int. J. Mod. Phys. A 11 (1996) 253 [hep-th/9503160] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22 (1980) 343 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. [14]

    M. Chaichian and J. Fischer, Higher Dimensional Space-time and Unitarity Bound on the Scattering Amplitude, Nucl. Phys. B 303 (1988) 557 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  15. [15]

    M. Chaichian, J. Fischer and Y. Vernov, Generalization of the Froissart-Martin bounds to scattering in a space-time of general dimension, Nucl. Phys. B 383 (1992) 151 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    S.B. Giddings and M. Srednicki, High-energy gravitational scattering and black hole resonances, Phys. Rev. D 77 (2008) 085025 [arXiv:0711.5012] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    S.B. Giddings and R.A. Porto, The Gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    G. Dvali, A. Franca and C. Gomez, Road Signs for UV-Completion, arXiv:1204.6388 [INSPIRE].

  19. [19]

    K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    H. Alnes, F. Ravndal and I.K. Wehus, Black-body radiation in extra dimensions, J. Phys. A 40 (2007) 14309 [quant-ph/0506131] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. [21]

    T.R. Cardoso and A.S. de Castro, The Blackbody radiation in D-dimensional universes, Rev. Bras. Ens. Fis. 27 (2005) 559 [quant-ph/0510002] [INSPIRE].

    Article  Google Scholar 

  22. [22]

    A.A. Garcia and C. Campuzano, All static circularly symmetric perfect fluid solutions of (2+1) gravity, Phys. Rev. D 67 (2003) 064014 [gr-qc/0211014] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. [23]

    R. Tolman, The Theory of the Relativity of Motion, University of California Press, U.S.A. (1917).

    MATH  Google Scholar 

  24. [24]

    G.A. Benford, D.L. Book and W.A. Newcomb, The tachyonic antitelephone, Phys. Rev. D 2 (1970) 263 [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    D. Bohm, The Special Theory of Relativity, Taylor & Francis, U.K. (2012).

    Google Scholar 

  26. [26]

    S.M. Carroll, E. Farhi, A.H. Guth and K.D. Olum, Energy momentum restrictions on the creation of Gott time machines, Phys. Rev. D 50 (1994) 6190 [gr-qc/9404065] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. [27]

    S. Deser and R. Jackiw, Time travel?, Comments Nucl. Part. Phys. 20 (1992) 337 [hep-th/9206094] [INSPIRE].

    Google Scholar 

  28. [28]

    S. Deser, R. Jackiw and G. ’t Hooft, Physical cosmic strings do not generate closed timelike curves, Phys. Rev. Lett. 68 (1992) 267 [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  29. [29]

    G.V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and extensions, in M. Shifman, A. Vainshtein, J. Wheater and I. Kogan eds., From Fields to Strings: Circumnavigating Theoretical Physics: Ian Kogan Memorial Collection 1, World Scientific (2005), pp. 445-522. [hep-th/0406216] [INSPIRE].

  30. [30]

    F. Bastianelli, J.M. Davila and C. Schubert, Gravitational corrections to the Euler-Heisenberg Lagrangian, JHEP 03 (2009) 086 [arXiv:0812.4849] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    F. Bastianelli, O. Corradini, J.M. Davila and C. Schubert, On the low energy limit of one loop photon-graviton amplitudes, Phys. Lett. B 716 (2012) 345 [arXiv:1202.4502] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    S. Deser and P. van Nieuwenhuizen, One Loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev. D 10 (1974) 401 [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP 09 (2014) 100 [arXiv:1405.2960] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying Models of New Physics via WW Scattering, Phys. Rev. Lett. 98 (2007) 041601 [hep-ph/0604255] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  37. [37]

    C. Cheung, D. O’Connell and B. Wecht, BCFW Recursion Relations and String Theory, JHEP 09 (2010) 052 [arXiv:1002.4674] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  38. [38]

    S. Weinberg, Feynman rules for any spin, Phys. Rev. 133 (1964) B1318 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  39. [39]

    S. Weinberg, Feynman rules for any spin. III, Phys. Rev. 181 (1969) 1893 [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    M. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, U.K. (2013).

    Google Scholar 

  41. [41]

    C. Misner, K. Thorne and J. Wheeler, Gravitation, W.H. Freeman, U.K. (1973).

    Google Scholar 

  42. [42]

    R.D. Daniels and G.M. Shore, ‘Faster than lightphotons and charged black holes, Nucl. Phys. B 425 (1994) 634 [hep-th/9310114] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  43. [43]

    F. Ravndal, Radiative corrections to the Stefan-Boltzmann law, hep-ph/9709220 [INSPIRE].

  44. [44]

    T.J. Hollowood and G.M. Shore, The Causal Structure of QED in Curved Spacetime: Analyticity and the Refractive Index, JHEP 12 (2008) 091 [arXiv:0806.1019] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  45. [45]

    J.B. Hartle and S.W. Hawking, Path Integral Derivation of Black Hole Radiance, Phys. Rev. D 13 (1976) 2188 [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    M. Visser, Gravitational vacuum polarization. 1: Energy conditions in the Hartle-Hawking vacuum, Phys. Rev. D 54 (1996) 5103 [gr-qc/9604007] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. [47]

    L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  48. [48]

    P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  49. [49]

    M.D. Kruskal, Maximal extension of Schwarzschild metric, Phys. Rev. 119 (1960) 1743 [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  50. [50]

    R.W. Fuller and J.A. Wheeler, Causality and Multiply Connected Space-Time, Phys. Rev. 128 (1962) 919 [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  51. [51]

    K.S. Thorne, Closed timelike curves, in R. Gleiser, C. Kozameh and O. Moreschi eds., General Relativity and Gravitation 1992, Taylor & Francis, U.K. (1993), pp. 295-316.

    Google Scholar 

  52. [52]

    M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, Time Machines and the Weak Energy Condition, Phys. Rev. Lett. 61 (1988) 1446 [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  54. [54]

    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  55. [55]

    R. Sundrum, Gravitational Lorentz Violation and Superluminality via AdS/CFT Duality, Phys. Rev. D 77 (2008) 086002 [arXiv:0708.1871] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  57. [57]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  58. [58]

    S. Leichenauer, Disrupting Entanglement of Black Holes, Phys. Rev. D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  60. [60]

    C. Cheung and G.N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    S.L. Dubovsky and S.M. Sibiryakov, Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind, Phys. Lett. B 638 (2006) 509 [hep-th/0603158] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  62. [62]

    C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grant N. Remmen.

Additional information

ArXiv ePrint: 1407.7865

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheung, C., Remmen, G.N. Infrared consistency and the weak gravity conjecture. J. High Energ. Phys. 2014, 87 (2014). https://doi.org/10.1007/JHEP12(2014)087

Download citation

Keywords

  • Scattering Amplitudes
  • Electromagnetic Processes and Properties
  • Gauge Symmetry
  • Classical Theories of Gravity