Journal of High Energy Physics

, 2014:71 | Cite as

Thermodynamics of Lifshitz black holes

  • Hai-Shan Liu
  • H. Lü
Open Access
Regular Article - Theoretical Physics


We specialize the Wald formalism to derive the thermodynamical first law for static black holes with spherical/torus/hyperbolic symmetries in a variety of supergravities or supergravity-inspired theories involving multiple scalars and vectors. We apply the formula to study the first law of a general class of Lifshitz black holes. We analyse the first law of three exact Lifshitz black holes and the results fit the general pattern. In one example, the first law is TdS + ΦdQ = 0 where (Φ, Q) are the electric potential and charge of the Maxwell field. The unusual vanishing of mass in this specific solution demonstrates that super-extremal charged black holes can exist in asymptotic Lifshitz spacetimes.


Black Holes AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large- \( \mathcal{N} \) limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  8. [8]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].ADSGoogle Scholar
  10. [10]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    R.B. Mann, Lifshitz topological black holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Donos and J.P. Gauntlett, Lifshitz solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    H. Singh, Special limits and non-relativistic solutions, JHEP 12 (2010) 061 [arXiv:1009.0651] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    N. Halmagyi, M. Petrini and A. Zaffaroni, Non-relativistic solutions of N = 2 gauged supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Singh, Lifshitz/Schródinger Dp-branes and dynamical exponents, JHEP 07 (2012) 082 [arXiv:1202.6533] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H. Lü, Y. Pang, C.N. Pope and J.F. Vazquez-Poritz, AdS and Lifshitz black holes in conformal and Einstein-Weyl gravities, Phys. Rev. D 86 (2012) 044011 [arXiv:1204.1062] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Mallayev, J.F. Vazquez-Poritz and Z. Zhang, Marginal deformations of non-relativistic field theories, Phys. Rev. D 90 (2014) 106007 [arXiv:1309.3257] [INSPIRE].Google Scholar
  23. [23]
    H.-S. Liu and H. Lü, Lifshitz and Schrödinger vacua, superstar resolution in gauged maximal supergravities, JHEP 02 (2014) 122 [arXiv:1310.8348] [INSPIRE].ADSGoogle Scholar
  24. [24]
    F.-W. Shu, K. Lin, A. Wang and Q. Wu, Lifshitz spacetimes, solitons and generalized BTZ black holes in quantum gravity at a Lifshitz point, JHEP 04 (2014) 056 [arXiv:1403.0946] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Lin, F.-W. Shu, A. Wang and Q. Wu, High-dimensional Lifshitz-type spacetimes, universal horizons and black holes in Hořava-Lifshitz gravity, arXiv:1404.3413 [INSPIRE].
  26. [26]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    S. Gao, The first law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories, Phys. Rev. D 68 (2003) 044016 [gr-qc/0304094] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H.-S. Liu and H. Lü, Scalar charges in asymptotic AdS geometries, Phys. Lett. B 730 (2014) 267 [arXiv:1401.0010] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Lü, C.N. Pope and Q. Wen, Thermodynamics of AdS black holes in Einstein-scalar gravity, arXiv:1408.1514 [INSPIRE].
  31. [31]
    H.-S. Liu, H. Lü and C.N. Pope, Thermodynamics of Einstein-Proca AdS black holes, JHEP 06 (2014) 109 [arXiv:1402.5153] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Lü, Y. Pang and C.N. Pope, AdS dyonic black hole and its thermodynamics, JHEP 11 (2013) 033 [arXiv:1307.6243] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    D.-W. Pang, On charged Lifshitz black holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    Y. Gim, W. Kim and S.-H. Yi, The first law of thermodynamics in Lifshitz black holes revisited, JHEP 07 (2014) 002 [arXiv:1403.4704] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged black branes with hyperscaling violating factor, JHEP 11 (2012) 137 [arXiv:1209.3946] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Z. Fan, Holographic fermions in asymptotically scaling geometries with hyperscaling violation, Phys. Rev. D 88 (2013) 026018 [arXiv:1303.6053] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Z. Fan, Dynamic Mott gap from holographic fermions in geometries with hyperscaling violation, JHEP 08 (2013) 119 [arXiv:1305.1151] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institute for Advanced Physics & MathematicsZhejiang University of TechnologyHangzhouChina
  2. 2.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations