Journal of High Energy Physics

, 2014:66 | Cite as

Dimensional reduction of BPS attractors in AdS gauged supergravities

  • Kiril HristovEmail author
Open Access
Regular Article - Theoretical Physics


We relate across dimensions BPS attractors of black strings and black holes of various topology in gauged supergravities with nontrivial scalar potential. The attractors are of the form AdS2,3 × Σ2,3 in 4, 5, and 6 dimensions, and can be generalized to some higher dimensional analogs. Even though the attractor geometries admit standard Kaluza-Klein and Scherk-Schwarz reductions, their asymptotic AdS spaces in general do not. The resulting lower dimensional objects are black holes with runaway asymptotics in supergravity theories with no maximally symmetric vacua. Such classes of solutions are already known to exist in literature, and results here suggest an interpretation in terms of their higher-dimensional origin that often has a full string theory embedding. In a particular relevant example, the relation between 5d Benini-Bobev black strings [1, 2] and a class of 4d Cacciatori-Klemm black holes [3] is worked out in full detail, providing a type IIB and dual field theory description of the latter solutions. As a consistency check, the Cardy formula for the field theory is shown to match the Bekenstein-Hawking entropy for horizon topology of any genus.


Black Holes in String Theory Supergravity Models AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys. B 400 (1993) 463 [hep-th/9210068] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Kugo and K. Ohashi, Supergravity tensor calculus in 5D from 6D, Prog. Theor. Phys. 104 (2000) 835 [hep-ph/0006231] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    L. Andrianopoli, S. Ferrara and M.A. Lledó, Scherk-Schwarz reduction of D = 5 special and quaternionic geometry, Class. Quant. Grav. 21 (2004) 4677 [hep-th/0405164] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    L. Andrianopoli, M.A. Lledó and M. Trigiante, The Scherk-Schwarz mechanism as a flux compactification with internal torsion, JHEP 05 (2005) 051 [hep-th/0502083] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    D. Gaiotto, A. Strominger and X. Yin, 5D black rings and 4D black holes, JHEP 02 (2006) 023 [hep-th/0504126] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    K. Behrndt, G. Lopes Cardoso and S. Mahapatra, Exploring the relation between 4D and 5D BPS solutions, Nucl. Phys. B 732 (2006) 200 [hep-th/0506251] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    H. Looyestijn, E. Plauschinn and S. Vandoren, New potentials from Scherk-Schwarz reductions, JHEP 12 (2010) 016 [arXiv:1008.4286] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    N. Banerjee, B. de Wit and S. Katmadas, The off-shell 4D/5D connection, JHEP 03 (2012) 061 [arXiv:1112.5371] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    K. Hristov and A. Rota, 6D-5D-4D reduction of BPS attractors in flat gauged supergravities, arXiv:1410.5386 [INSPIRE].
  16. [16]
    E. Lozano-Tellechea, P. Meessen and T. Ortín, On D = 4, D = 5, D = 6 vacua with eight supercharges, Class. Quant. Grav. 19 (2002) 5921 [hep-th/0206200] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.P. Gauntlett, Branes, calibrations and supergravity, hep-th/0305074 [INSPIRE].
  19. [19]
    I.R. Klebanov and J.M. Maldacena, Superconformal gauge theories and non-critical superstrings, Int. J. Mod. Phys. A 19 (2004) 5003 [hep-th/0409133] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    S. Barisch-Dick, G. Lopes Cardoso, M. Haack and S. Nampuri, Extremal black brane solutions in five-dimensional gauged supergravity, JHEP 02 (2013) 103 [arXiv:1211.0832] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Karndumri and E. Ó Colgáin, Supergravity dual of c-extremization, Phys. Rev. D 87 (2013) 101902 [arXiv:1302.6532] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Karndumri and E. Ó Colgáin, 3D supergravity from wrapped D3-branes, JHEP 10 (2013) 094 [arXiv:1307.2086] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Klemm and W.A. Sabra, Supersymmetry of black strings in D = 5 gauged supergravities, Phys. Rev. D 62 (2000) 024003 [hep-th/0001131] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    S. Cucu, H. Lü and J.F. Vazquez-Poritz, A supersymmetric and smooth compactification of M-theory to AdS 5, Phys. Lett. B 568 (2003) 261 [hep-th/0303211] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS D−2 × S 2 to AdS D , Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE].
  27. [27]
    J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, New supersymmetric AdS 3 solutions, Phys. Rev. D 74 (2006) 106007 [hep-th/0608055] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    A. Almuhairi and J. Polchinski, Magnetic AdS×R 2 : supersymmetry and stability, arXiv:1108.1213 [INSPIRE].
  29. [29]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  30. [30]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    N. Halmagyi, BPS black hole horizons in N = 2 gauged supergravity, JHEP 02 (2014) 051 [arXiv:1308.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Halmagyi and T. Vanel, AdS black holes from duality in gauged supergravity, JHEP 04 (2014) 130 [arXiv:1312.5430] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    S. Katmadas, Static BPS black holes in U(1) gauged supergravity, JHEP 09 (2014) 027 [arXiv:1405.4901] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Halmagyi, Static BPS black holes in AdS 4 with general dyonic charges, arXiv:1408.2831 [INSPIRE].
  36. [36]
    K. Hristov and A. Rota, Attractors, black objects and holographic RG flows in 5D maximal gauged supergravities, JHEP 03 (2014) 057 [arXiv:1312.3275] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    M.J. Duff, H. Lü and C.N. Pope, Supersymmetry without supersymmetry, Phys. Lett. B 409 (1997) 136 [hep-th/9704186] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    P. Kraus, Lectures on black holes and the AdS 3 /CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    C. Closset and I. Shamir, The N = 1 chiral multiplet on T 2 × S 2 and supersymmetric localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K. Hristov and S. Katmadas, Wilson lines for AdS 5 black strings, arXiv:1411.2432 [INSPIRE].
  43. [43]
    M. Cariglia and O.A.P. Mac Conamhna, The general form of supersymmetric solutions of N =(1,0) U(1) and SU(2) gauged supergravities in six-dimensions, Class. Quant. Grav. 21 (2004) 3171 [hep-th/0402055] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  44. [44]
    M. Günaydin, L.J. Romans and N.P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L.J. Romans, Gauged N = 4 supergravities in five-dimensions and their magnetovac backgrounds, Nucl. Phys. B 267 (1986) 433 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  2. 2.INFN, sezione di Milano-BicoccaMilanoItaly

Personalised recommendations