Advertisement

Journal of High Energy Physics

, 2014:56 | Cite as

Black holes and the double copy

  • R. MonteiroEmail author
  • D. O’Connell
  • C. D. White
Open Access
Regular Article - Theoretical Physics

Abstract

Recently, a perturbative duality between gauge and gravity theories (the double copy) has been discovered, that is believed to hold to all loop orders. In this paper, we examine the relationship between classical solutions of non-Abelian gauge theory and gravity. We propose a general class of gauge theory solutions that double copy to gravity, namely those involving stationary Kerr-Schild metrics. The Schwarzschild and Kerr black holes (plus their higher-dimensional equivalents) emerge as special cases. We also discuss plane wave solutions. Furthermore, a recently examined double copy between the self-dual sectors of Yang-Mills theory and gravity can be reinterpreted using a momentum-space generalisation of the Kerr-Schild framework.

Keywords

Scattering Amplitudes Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
  3. [3]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].
  6. [6]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like relations for color-ordered amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program, Phys. Lett. B 695 (2011) 350 [arXiv:1004.3417] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    S.H. Henry Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP 06 (2010) 071 [Erratum ibid. 1104 (2011) 114] [arXiv:1003.1732] [INSPIRE].
  9. [9]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Cachazo, Fundamental BCJ relation in N = 4 SYM from the connected formulation, arXiv:1206.5970 [INSPIRE].
  11. [11]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, R. Monteiro and D. O’Connell, Algebras for amplitudes, JHEP 06 (2012) 061 [arXiv:1203.0944] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    J.J. Carrasco and H. Johansson, Five-point amplitudes in N = 4 super-Yang-Mills theory and N = 8 supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.J.M. Carrasco, M. Chiodaroli, M. Gunaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled N ≥ 4 supergravity, JHEP 03 (2013) 056 [arXiv:1212.1146] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    T. Bargheer, S. He and T. McLoughlin, New relations for three-dimensional supersymmetric scattering amplitudes, Phys. Rev. Lett. 108 (2012) 231601 [arXiv:1203.0562] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-kinematics duality for one-loop rational amplitudes, JHEP 04 (2013) 107 [arXiv:1301.4165] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    N.E.J. Bjerrum-Bohr, T. Dennen, R. Monteiro and D. O’Connell, Integrand oxidation and one-loop colour-dual numerators in N = 4 gauge theory, JHEP 07 (2013) 092 [arXiv:1303.2913] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    Z. Bern, S. Davies, T. Dennen, Y.-t. Huang and J. Nohle, Color-kinematics duality for pure Yang-Mills and gravity at one and two loops, arXiv:1303.6605 [INSPIRE].
  23. [23]
    Z. Bern, S. Davies and T. Dennen, The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops, Phys. Rev. D 88 (2013) 065007 [arXiv:1305.4876] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Nohle, Color-kinematics duality in one-loop four-gluon amplitudes with matter, Phys. Rev. D 90 (2014) 025020 [arXiv:1309.7416] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet properties of N = 4 supergravity at four loops, Phys. Rev. Lett. 111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.G. Naculich, H. Nastase and H.J. Schnitzer, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP 04 (2013) 114 [arXiv:1301.2234] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    Y.-J. Du, B. Feng and C.-H. Fu, Dual-color decompositions at one-loop level in Yang-Mills theory, JHEP 06 (2014) 157 [arXiv:1402.6805] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in \( \mathcal{N}=5 \) supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, arXiv:1407.4772 [INSPIRE].
  31. [31]
    R. Saotome and R. Akhoury, Relationship between gravity and gauge scattering in the high energy limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Sabio Vera, E. Serna Campillo and M.A. Vazquez-Mozo, Color-kinematics duality and the Regge limit of inelastic amplitudes, JHEP 04 (2013) 086 [arXiv:1212.5103] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    H. Johansson, A. Sabio Vera, E. Serna Campillo and M.A. Vszquez-Mozo, Color-kinematics duality in multi-Regge kinematics and dimensional reduction, JHEP 10 (2013) 215 [arXiv:1307.3106] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    H. Johansson, A. Sabio Vera, E. Serna Campillo and M.A. Vazquez-Mozo, Color-kinematics duality and dimensional reduction for graviton emission in Regge limit, arXiv:1310.1680 [INSPIRE].
  35. [35]
    C.-H. Fu, Y.-J. Du and B. Feng, Note on symmetric BCJ numerator, JHEP 08 (2014) 098 [arXiv:1403.6262] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Bianchi and M.S. Bianchi, Non-planarity through unitarity in ABJM, Phys. Rev. D 89 (2014) 125002 [arXiv:1311.6464] [INSPIRE].ADSGoogle Scholar
  37. [37]
    R. Monteiro and D. O’Connell, The kinematic algebras from the scattering equations, JHEP 03 (2014) 110 [arXiv:1311.1151] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    M. Tolotti and S. Weinzierl, Construction of an effective Yang-Mills Lagrangian with manifest BCJ duality, JHEP 07 (2013) 111 [arXiv:1306.2975] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    C.-H. Fu, Y.-J. Du and B. Feng, Note on construction of dual-trace factor in Yang-Mills theory, JHEP 10 (2013) 069 [arXiv:1305.2996] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    Y.-J. Du, B. Feng and C.-H. Fu, The construction of dual-trace factor in Yang-Mills theory, JHEP 07 (2013) 057 [arXiv:1304.2978] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    C.-H. Fu, Y.-J. Du and B. Feng, An algebraic approach to BCJ numerators, JHEP 03 (2013) 050 [arXiv:1212.6168] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    A. Sivaramakrishnan, Color-kinematic duality in ABJM theory without amplitude relations, arXiv:1402.1821 [INSPIRE].
  43. [43]
    S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.G. Naculich, Scattering equations and virtuous kinematic numerators and dual-trace functions, JHEP 07 (2014) 143 [arXiv:1404.7141] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, arXiv:1408.0764 [INSPIRE].
  46. [46]
    J.J.M. Carrasco, R. Kallosh, R. Roiban and A.A. Tseytlin, On the U(1) duality anomaly and the S-matrix of N = 4 supergravity, JHEP 07 (2013) 029 [arXiv:1303.6219] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    S. Litsey and J. Stankowicz, Kinematic numerators and a double-copy formula for N = 4 super-Yang-mills residues, Phys. Rev. D 90 (2014) 025013 [arXiv:1309.7681] [INSPIRE].ADSGoogle Scholar
  48. [48]
    W. Siegel, Fields, hep-th/9912205 [INSPIRE].
  49. [49]
    R. Monteiro and D. O’Connell, The kinematic algebra from the self-dual sector, JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    A. Parkes, A cubic action for selfdual Yang-Mills, Phys. Lett. B 286 (1992) 265 [hep-th/9203074] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    D. Vaman and Y.-P. Yao, Color kinematic symmetric (BCJ) numerators in a light-like gauge, arXiv:1408.2818 [INSPIRE].
  52. [52]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, arXiv:1409.8256 [INSPIRE].
  55. [55]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor strings in 4-dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Yang-Mills origin of gravitational symmetries, arXiv:1408.4434 [INSPIRE].
  58. [58]
    C. Cheung, unpublished notes.Google Scholar
  59. [59]
    D. Neill and I.Z. Rothstein, Classical space-times from the S matrix, Nucl. Phys. B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    H. Stephani et al., Exact solutions of Einsteins field equations, Cambridge University Press, Cambridge U.K. (2009).Google Scholar
  62. [62]
    H. Stephani and J. Stewart, General relativity. An introduction to the theory of the gravitational field, Cambridge University Press, Cambridge U.K. (1990).zbMATHGoogle Scholar
  63. [63]
    P. Sikivie and N. Weiss, Classical Yang-Mills theory in the presence of external sources, Phys. Rev. D 18 (1978) 3809 [INSPIRE].ADSGoogle Scholar
  64. [64]
    F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  65. [65]
    W. Israel, Source of the Kerr metric, Phys. Rev. D 2 (1970) 641 [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    H. Balasin and H. Nachbagauer, Distributional energy momentum tensor of the Kerr-Newman space-time family, Class. Quant. Grav. 11 (1994) 1453 [gr-qc/9312028] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  68. [68]
    R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].Google Scholar
  69. [69]
    S.M. Barnett, Maxwellian theory of gravitational waves and their mechanical properties, New J. Phys. 16 (2014) 023027 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    S.R. Coleman, Nonabelian plane waves, Phys. Lett. B 70 (1977) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P.C. Aichelburg and R.U. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell techniques and universal results in quantum gravity, JHEP 02 (2014) 111 [arXiv:1309.0804] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  73. [73]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordU.K.
  2. 2.Higgs Centre for Theoretical Physics, School of Physics and AstronomyThe University of EdinburghEdinburghU.K.
  3. 3.SUPA, School of Physics and AstronomyUniversity of GlasgowGlasgowU.K.

Personalised recommendations