Advertisement

Journal of High Energy Physics

, 2014:50 | Cite as

New solutions with accelerated expansion in string theory

  • Matthew Dodelson
  • Xi Dong
  • Eva Silverstein
  • Gonzalo Torroba
Open Access
Regular Article - Theoretical Physics

Abstract

We present concrete solutions with accelerated expansion in string theory, requiring a small, tractable list of stress energy sources. We explain how this construction (and others in progress) evades previous no go theorems for simple accelerating solutions. Our solutions respect an approximate scaling symmetry and realize discrete sequences of values for the equation of state, including one with an accumulation point at w = −1 and another accumulating near w = −1/3 from below. In another class of models, a density of defects generates scaling solutions with accelerated expansion. We briefly discuss potential applications to dark energy phenomenology, and to holography for cosmology.

Keywords

Flux compactifications Superstring Vacua dS vacua in string theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.R. Frey, Warped strings: Selfdual flux and contemporary compactifications, hep-th/0308156 [INSPIRE].
  2. [2]
    J. Polchinski, The Cosmological Constant and the String Landscape, hep-th/0603249 [INSPIRE].
  3. [3]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].ADSCrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [INSPIRE].
  5. [5]
    D. Baumann and L. McAllister, Advances in Inflation in String Theory, Ann. Rev. Nucl. Part. Sci. 59 (2009) 67 [arXiv:0901.0265] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C.P. Burgess, M. Cicoli and F. Quevedo, String Inflation After Planck 2013, JCAP 11 (2013) 003 [arXiv:1306.3512] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Silverstein, (A)dS backgrounds from asymmetric orientifolds, hep-th/0106209 [INSPIRE].
  8. [8]
    A. Maloney, E. Silverstein and A. Strominger, de Sitter space in noncritical string theory, hep-th/0205316 [INSPIRE].
  9. [9]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Saltman and E. Silverstein, A New handle on de Sitter compactifications, JHEP 01 (2006) 139 [hep-th/0411271] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    E. Silverstein, Dimensional mutation and spacelike singularities, Phys. Rev. D 73 (2006) 086004 [hep-th/0510044] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    J. McGreevy, E. Silverstein and D. Starr, New dimensions for wound strings: The Modular transformation of geometry to topology, Phys. Rev. D 75 (2007) 044025 [hep-th/0612121] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    D.R. Green, A. Lawrence, J. McGreevy, D.R. Morrison and E. Silverstein, Dimensional duality, Phys. Rev. D 76 (2007) 066004 [arXiv:0705.0550] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    S. Hellerman and I. Swanson, Charting the landscape of supercritical string theory, Phys. Rev. Lett. 99 (2007) 171601 [arXiv:0705.0980] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    S. Hellerman and I. Swanson, Cosmological unification of string theories, JHEP 07 (2008) 022 [hep-th/0612116] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    S. Hellerman and I. Swanson, Dimension-changing exact solutions of string theory, JHEP 09 (2007) 096 [hep-th/0612051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Hellerman and I. Swanson, Cosmological solutions of supercritical string theory, Phys. Rev. D 77 (2008) 126011 [hep-th/0611317] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher Spin de Sitter Holography from Functional Determinants, JHEP 02 (2014) 007 [arXiv:1305.6321] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, arXiv:1108.5735 [INSPIRE].
  22. [22]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    M. Alishahiha, A. Karch and E. Silverstein, Hologravity, JHEP 06 (2005) 028 [hep-th/0504056] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2005) 393 [hep-th/0407125] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    S. Panda, Y. Sumitomo and S.P. Trivedi, Axions as Quintessence in String Theory, Phys. Rev. D 83 (2011) 083506 [arXiv:1011.5877] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Hellerman, N. Kaloper and L. Susskind, String theory and quintessence, JHEP 06 (2001) 003 [hep-th/0104180] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    G. Gurarie, to appear.Google Scholar
  29. [29]
    U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    X. Chen, G. Shiu, Y. Sumitomo and S.H.H. Tye, A Global View on The Search for de-Sitter Vacua in (type IIA) String Theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav. 29 (2012) 055001 [arXiv:1111.3154] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Shiu and Y. Sumitomo, Stability Constraints on Classical de Sitter Vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    U.H. Danielsson et al., de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].ADSCrossRefMathSciNetMATHGoogle Scholar
  35. [35]
    G.R. Dvali and S.H.H. Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev. D 58 (1998) 061301 [astro-ph/9804177] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.J. Tolley and D.H. Wesley, Scale-invariance in expanding and contracting universes from two-field models, JCAP 05 (2007) 006 [hep-th/0703101] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].ADSGoogle Scholar
  40. [40]
    G. Dvali and S. Kachru, New old inflation, hep-th/0309095 [INSPIRE].
  41. [41]
    D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev. D 53 (1996) 1784 [hep-ph/9510204] [INSPIRE].ADSGoogle Scholar
  42. [42]
    D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped Inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].ADSGoogle Scholar
  43. [43]
    I.-S. Yang, The Strong Multifield Slowroll Condition and Spiral Inflation, Phys. Rev. D 85 (2012) 123532 [arXiv:1202.3388] [INSPIRE].ADSGoogle Scholar
  44. [44]
    P. Ahlqvist, B. Greene and D. Kagan, Exploring Spiral Inflation in String Theory, arXiv:1308.0538 [INSPIRE].
  45. [45]
    A.R. Brown, Boom and Bust Inflation: a Graceful Exit via Compact Extra Dimensions, Phys. Rev. Lett. 101 (2008) 221302 [arXiv:0807.0457] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. D’Amico, R. Gobbetti, M. Kleban and M. Schillo, Unwinding Inflation, JCAP 03 (2013) 004 [arXiv:1211.4589] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of Warped Flux Compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    M.R. Douglas, Effective potential and warp factor dynamics, JHEP 03 (2010) 071 [arXiv:0911.3378] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Dodelson, X. Dong, E. Silverstein and G. Torroba, New de Sitter solutions in string theory, Work in progress described in E. Silverstein, talk at Strings 2013.Google Scholar
  51. [51]
    O. Aharony and E. Silverstein, Supercritical stability, transitions and (pseudo)tachyons, Phys. Rev. D 75 (2007) 046003 [hep-th/0612031] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    A.H. Chamseddine, A Study of noncritical strings in arbitrary dimensions, Nucl. Phys. B 368 (1992) 98 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    S.P. de Alwis, J. Polchinski and R. Schimmrigk, Heterotic Strings With Tree Level Cosmological Constant, Phys. Lett. B 218 (1989) 449 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R.C. Myers, New Dimensions for Old Strings, Phys. Lett. B 199 (1987) 371 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    R. Myers, New dimensions for old strings, Phys. Lett. B 199 (1987) 371.ADSCrossRefGoogle Scholar
  57. [57]
    S.P. de Alwis, J. Polchinski and R. Schimmrigk, Heterotic Strings With Tree Level Cosmological Constant, Phys. Lett. B 218 (1989) 449 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).CrossRefGoogle Scholar
  59. [59]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).CrossRefGoogle Scholar
  60. [60]
    E. Silverstein, TASI/PiTP / ISS lectures on moduli and microphysics, hep-th/0405068 [INSPIRE].
  61. [61]
    L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  62. [62]
    E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  63. [63]
    N. Kaloper, A. Lawrence and L. Sorbo, An Ignoble Approach to Large Field Inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from Axion Monodromy Inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].ADSGoogle Scholar
  66. [66]
    G. Gurarie, to appear.Google Scholar
  67. [67]
    D. Wenren, to appear.Google Scholar
  68. [68]
    A. Strominger, The Inverse Dimensional Expansion in Quantum Gravity, Phys. Rev. D 24 (1981) 3082 [INSPIRE].ADSMathSciNetGoogle Scholar
  69. [69]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    E.J. Ruiz, D.L. Shafer, D. Huterer and A. Conley, Principal components of dark energy with SNLS supernovae: the effects of systematic errors, Phys. Rev. D 86 (2012) 103004 [arXiv:1207.4781] [INSPIRE].ADSGoogle Scholar
  74. [74]
    Planck collaboration, Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys. 571 (2014) A22 [arXiv:1303.5082] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    K.T. Story et al., A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey, Astrophys. J. 779 (2013) 86 [arXiv:1210.7231] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    Atacama Cosmology Telescope collaboration, J.L. Sievers et al., The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data, JCAP 10 (2013) 060 [arXiv:1301.0824] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J. Blabäck, U. Danielsson and G. Dibitetto, Fully stable dS vacua from generalised fluxes, JHEP 08 (2013) 054 [arXiv:1301.7073] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    R. Kallosh, A.D. Linde, S. Prokushkin and M. Shmakova, Supergravity, dark energy and the fate of the universe, Phys. Rev. D 66 (2002) 123503 [hep-th/0208156] [INSPIRE].ADSMathSciNetGoogle Scholar
  80. [80]
    C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B 302 (1988) 668 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    P.G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D 58 (1998) 023503 [astro-ph/9711102] [INSPIRE].ADSGoogle Scholar
  82. [82]
    E.J. Copeland, A.R. Liddle and D. Wands, Exponential potentials and cosmological scaling solutions, Phys. Rev. D 57 (1998) 4686 [gr-qc/9711068] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M. Doran and C. Wetterich, Quintessence and the cosmological constant, Nucl. Phys. Proc. Suppl. 124 (2003) 57 [astro-ph/0205267] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  84. [84]
    B. Ratra and P.J.E. Peebles, Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev. D 37 (1988) 3406 [INSPIRE].ADSGoogle Scholar
  85. [85]
    I. Zlatev, L.-M. Wang and P.J. Steinhardt, Quintessence, cosmic coincidence and the cosmological constant, Phys. Rev. Lett. 82 (1999) 896 [astro-ph/9807002] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett. 85 (2000) 4438 [astro-ph/0004134] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S. Kachru, D. Simic and S.P. Trivedi, Stable Non-Supersymmetric Throats in String Theory, JHEP 05 (2010) 067 [arXiv:0905.2970] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  88. [88]
    G.T. Horowitz, J. Orgera and J. Polchinski, Nonperturbative Instability of AdS 5 × S 5 /Z k , Phys. Rev. D 77 (2008) 024004 [arXiv:0709.4262] [INSPIRE].ADSMathSciNetGoogle Scholar
  89. [89]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Unitarity bounds and RG flows in time dependent quantum field theory, Phys. Rev. D 86 (2012) 025013 [arXiv:1203.1680] [INSPIRE].ADSGoogle Scholar
  90. [90]
    D. Harlow, S.H. Shenker, D. Stanford and L. Susskind, Tree-like structure of eternal inflation: A solvable model, Phys. Rev. D 85 (2012) 063516 [arXiv:1110.0496] [INSPIRE].ADSGoogle Scholar
  91. [91]
    B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A Holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].ADSMathSciNetGoogle Scholar
  92. [92]
    T. Banks and W. Fischler, Holographic Theory of Accelerated Observers, the S-matrix and the Emergence of Effective Field Theory, arXiv:1301.5924 [INSPIRE].
  93. [93]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Perturbative Critical Behavior from Spacetime Dependent Couplings, Phys. Rev. D 86 (2012) 105028 [arXiv:1207.6663] [INSPIRE].ADSGoogle Scholar
  94. [94]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Matthew Dodelson
    • 1
  • Xi Dong
    • 1
  • Eva Silverstein
    • 1
    • 2
    • 3
  • Gonzalo Torroba
    • 1
  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  3. 3.Kavli Institute for Particle Astrophysics and CosmologyStanfordU.S.A.

Personalised recommendations