Journal of High Energy Physics

, 2013:60 | Cite as

Dyonic black hole and holography

  • Suvankar DuttaEmail author
  • Akash Jain
  • Rahul Soni


We study thermodynamic properties of dyonic black hole and its dual field theory. We observe that the phase diagram of a dyonic black hole in constant electric potential and magnetic charge ensemble is similar to that of a Van der Waals fluid with chemical potential. Phase transitions and other critical phenomena have been studied in presence of magnetic charge and chemical potential. We also analyse magnetic properties of dual conformal field theory and observe a ferromagnetic like behavior of boundary theory when the external magnetic field vanishes. Finally, we compute susceptibility of different phases of boundary CFT and find that, depending on the strength of the external magnetic field and temperature, these phases are either paramagnetic or diamagnetic.


Black Holes Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.M. Caldarelli, O.J. Dias and D. Klemm, Dyonic AdS black holes from magnetohydrodynamics, JHEP 03 (2009) 025 [arXiv:0812.0801] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Altamirano, D. Kubiznak, R.B. Mann and Z. Sherkatghanad, Kerr-AdS analogue of tricritical point and solid/liquid/gas phase transition, arXiv:1308.2672 [INSPIRE].
  11. [11]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Chen, X. Liu, C. Liu and J. Jing, PV criticality of AdS black hole in f(R) gravity, Chin. Phys. Lett. 30 (2013) 060401 [arXiv:1301.3234] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H. Lü, Y. Pang and C. Pope, AdS dyonic black hole and its thermodynamics, JHEP 11 (2013) 033 [arXiv:1307.6243] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Henneaux and C. Teitelboim, The cosmological constant as a canonical variable, Phys. Lett. B 143 (1984) 415 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Wang, S.-Q. Wu, F. Xie and L. Dan, The first laws of thermodynamics of the (2 + 1)-dimensional BTZ black holes and Kerr-de Sitter spacetimes, Chin. Phys. Lett. 23 (2006) 1096 [hep-th/0601147] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Sekiwa, Thermodynamics of de Sitter black holes: thermal cosmological constant, Phys. Rev. D 73 (2006) 084009 [hep-th/0602269] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    E.A. Larranaga Rubio, Stringy generalization of the first law of thermodynamics for rotating BTZ black hole with a cosmological constant as state parameter, arXiv:0711.0012 [INSPIRE].
  19. [19]
    B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    B.P. Dolan, Compressibility of rotating black holes, Phys. Rev. D 84 (2011) 127503 [arXiv:1109.0198] [INSPIRE].ADSGoogle Scholar
  21. [21]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Surya, K. Schleich and D.M. Witt, Phase transitions for flat AdS black holes, Phys. Rev. Lett. 86 (2001) 5231 [hep-th/0101134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N. Banerjee and S. Dutta, Phase transition of electrically charged Ricci-flat black holes, JHEP 07 (2007) 047 [arXiv:0705.2682] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Cvetič and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    P. Basu and S.R. Wadia, R-charged AdS 5 black holes and large-N unitary matrix models, Phys. Rev. D 73 (2006) 045022 [hep-th/0506203] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D. Yamada and L.G. Yaffe, Phase diagram of N = 4 super-Yang-Mills theory with R-symmetry chemical potentials, JHEP 09 (2006) 027 [hep-th/0602074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Science Education and Research BhopalBhopalIndia

Personalised recommendations