Journal of High Energy Physics

, 2013:57 | Cite as

Heterotic-Type II duality and wrapping rules

  • E. A. Bergshoeff
  • C. Condeescu
  • G. Pradisi
  • F. Riccioni
Article

Abstract

We show how the brane wrapping rules, recently discovered in closed oriented string theories compactified on tori, are extended to the case of the Type IIA string compactified on K3. To this aim, a crucial role is played by the duality between this theory and the Heterotic string compactified on a four-dimensional torus T4. We first show how the wrapping rules are applied to the \( {{{{T^4}}} \left/ {{{{\mathbb{Z}}_N}}} \right.} \) orbifold limits of K3 by relating the D0 branes, obtained as D2 branes wrapping two-cycles, to the perturbative BPS states of the Heterotic theory on T4. The wrapping rules are then extended to the solitonic branes of the Type IIA string, finding agreement with the analogous Heterotic states. Finally, the geometric Type IIA orbifolds are mapped, via T-duality, to non-geometric Type IIB orbifolds, where the wrapping rules are also at work and consistent with string dualities.

Keywords

p-branes String Duality Superstrings and Heterotic Strings 

References

  1. [1]
    E. Witten and D.I. Olive, Supersymmetry Algebras That Include Topological Charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (1998), pg. 402.Google Scholar
  3. [3]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge, U.K. (1998), pg. 531.Google Scholar
  4. [4]
    C.V. Johnson, D-branes, Cambridge University Press, Cambridge, U.S.A. (2003), pg. 548.MATHGoogle Scholar
  5. [5]
    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376 (2003) 339-405] [hep-th/0204089] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    P. Townsend, P-brane democracy, in The world in eleven dimensions, M.J. Duff ed., pg. 375–389 [hep-th/9507048] [INSPIRE].
  7. [7]
    P. Townsend, Four lectures on M-theory, in proceeding of ICTP summer school on High Energy Physics and Cosmology, Trieste, Italy, June 1996, pg. 385–438 [hep-th/9612121] [INSPIRE].
  8. [8]
    C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    E.A. Bergshoeff and F. Riccioni, The D-brane U-scan, arXiv:1109.1725 [INSPIRE].
  10. [10]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    E.A. Bergshoeff, A. Marrani and F. Riccioni, Brane orbits, Nucl. Phys. B 861 (2012) 104 [arXiv:1201.5819] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    E. Bergshoeff, J. Hartong, P. Howe, T. Ortín and F. Riccioni, IIA/ IIB Supergravity and Ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E.A. Bergshoeff and F. Riccioni, Heterotic wrapping rules, JHEP 01 (2013) 005 [arXiv:1210.1422] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    P.S. Aspinwall, Enhanced gauge symmetries and K3 surfaces, Phys. Lett. B 357 (1995) 329 [hep-th/9507012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    E.A. Bergshoeff, F. Riccioni and L. Romano, Branes, Weights and Central Charges, JHEP 06 (2013) 019 [arXiv:1303.0221] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    B.R. Greene, A.D. Shapere, C. Vafa and S.-T. Yau, Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds, Nucl. Phys. B 337 (1990) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    E.A. Bergshoeff, J. Hartong, T. Ortín and D. Roest, Seven-branes and Supersymmetry, JHEP 02 (2007) 003 [hep-th/0612072] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    A. Dabholkar, J.P. Gauntlett, J.A. Harvey and D. Waldram, Strings as solitons and black holes as strings, Nucl. Phys. B 474 (1996) 85 [hep-th/9511053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J.H. Schwarz and A. Sen, Duality symmetries of 4 − D heterotic strings, Phys. Lett. B 312 (1993) 105 [hep-th/9305185] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and Solitons, Nucl. Phys. B 340 (1990) 33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    C.G. Callan, J.M. Maldacena and A.W. Peet, Extremal black holes as fundamental strings, Nucl. Phys. B 475 (1996) 645 [hep-th/9510134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    K. Narain, New Heterotic String Theories in Uncompactified Dimensions < 10, Phys. Lett. B 169 (1986) 41 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    K. Narain, M. Sarmadi and E. Witten, A Note on Toroidal Compactification of Heterotic String Theory, Nucl. Phys. B 279 (1987) 369 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    P.S. Aspinwall and D.R. Morrison, String theory on K3 surfaces, in Mirror symmetry II, B. Greene and S.T. Yau eds., (1994) pg. 703–716 [hep-th/9404151] [INSPIRE].
  34. [34]
    P.S. Aspinwall, K3 surfaces and string duality, in Differential geometry inspired by string theory, S.T. Yau ed., (1996) pg. 1–95 [hep-th/9611137] [INSPIRE].
  35. [35]
    W. Nahm and K. Wendland, A Hikers guide to K3: Aspects of N = (4,4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001) 85 [hep-th/9912067] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    N. Seiberg, Observations on the Moduli Space of Superconformal Field Theories, Nucl. Phys. B 303 (1988) 286 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Sen, String string duality conjecture in six-dimensions and charged solitonic strings, Nucl. Phys. B 450 (1995) 103 [hep-th/9504027] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J.A. Harvey and A. Strominger, The heterotic string is a soliton, Nucl. Phys. B 449 (1995) 535 [Erratum ibid. B 458 (1996) 456–473] [hep-th/9504047] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    E. Kiritsis, N.A. Obers and B. Pioline, Heterotic/type-II triality and instantons on K(3), JHEP 01 (2000) 029 [hep-th/0001083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    H. Ooguri, Y. Oz and Z. Yin, D-branes on Calabi-Yau spaces and their mirrors, Nucl. Phys. B 477 (1996) 407 [hep-th/9606112] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    C.G. Callan Jr., C. Lovelace, C. Nappi and S. Yost, Adding Holes and Crosscaps to the Superstring, Nucl. Phys. B 293 (1987) 83 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    N. Ishibashi, The Boundary and Crosscap States in Conformal Field Theories, Mod. Phys. Lett. A 4 (1989) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    G. Pradisi, A. Sagnotti and Y. Stanev, Completeness conditions for boundary operators in 2 − D conformal field theory, Phys. Lett. B 381 (1996) 97 [hep-th/9603097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    G. Pradisi, A. Sagnotti and Y. Stanev, The open descendants of nondiagonal SU(2) WZW models, Phys. Lett. B 356 (1995) 230 [hep-th/9506014] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Pradisi, A. Sagnotti and Y.S. Stanev, Planar duality in SU(2) WZW models, Phys. Lett. B 354 (1995) 279 [hep-th/9503207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    J. Fuchs and C. Schweigert, A classifying algebra for boundary conditions, Phys. Lett. B 414 (1997) 251 [hep-th/9708141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J. Fuchs, L. Huiszoon, A. Schellekens, C. Schweigert and J. Walcher, Boundaries, crosscaps and simple currents, Phys. Lett. B 495 (2000) 427 [hep-th/0007174] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    M.A. Walton, The Heterotic String on the Simplest Calabi-Yau Manifold and Its Orbifold Limits, Phys. Rev. D 37 (1988) 377 [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    K. Wendland, Consistency of orbifold conformal field theories on K3, Adv. Theor. Math. Phys. 5 (2002) 429 [hep-th/0010281] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    R. Blumenhagen, V. Braun, B. Körs and D. Lüst, Orientifolds of K3 and Calabi-Yau manifolds with intersecting D-branes, JHEP 07 (2002) 026 [hep-th/0206038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    J.P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, Volume 7, Springer-Verlag, (1973).Google Scholar
  56. [56]
    C. Angelantonj and R. Blumenhagen, Discrete deformations in type-I vacua, Phys. Lett. B 473 (2000) 86 [hep-th/9911190] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    G. Pradisi, Type I vacua from diagonal Z 3 -orbifolds, Nucl. Phys. B 575 (2000) 134 [hep-th/9912218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    C. Hull and R. Reid-Edwards, Gauge symmetry, T-duality and doubled geometry, JHEP 08 (2008) 043 [arXiv:0711.4818] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • E. A. Bergshoeff
    • 1
  • C. Condeescu
    • 2
    • 3
  • G. Pradisi
    • 4
    • 2
  • F. Riccioni
    • 5
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.INFN, Sezione di Roma “Tor Vergata”RomaItaly
  3. 3.Department of Theoretical Physics, IFIN-HHMagurele-BucharestRomania
  4. 4.Dipartimento di FisicaUniversità di Roma “Tor Vergata”RomaItaly
  5. 5.INFN Sezione di Roma, Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations