Advertisement

Journal of High Energy Physics

, 2013:55 | Cite as

Equation of state of hot and dense QCD: resummed perturbation theory confronts lattice data

  • Sylvain MogliacciEmail author
  • Jens O. Andersen
  • Michael Strickland
  • Nan Su
  • Aleksi Vuorinen
Article

Abstract

We perform a detailed analysis of the predictions of resummed perturbation theory for the pressure and the second-, fourth-, and sixth-order diagonal quark number susceptibilities in a hot and dense quark-gluon plasma. First, we present an exact one-loop calculation of the equation of state within hard-thermal-loop perturbation theory (HTLpt) and compare it to a previous one-loop HTLpt calculation that employed an expansion in the ratios of thermal masses and the temperature. We find that this expansion converges reasonably fast. We then perform a resummation of the existing four-loop weak coupling expression for the pressure, motivated by dimensional reduction. Finally, we compare the exact one-loop HTLpt and resummed dimensional reduction results with state-of-the-art lattice calculations and a recent mass-expanded three-loop HTLpt calculation.

Keywords

Quark-Gluon Plasma Resummation 

References

  1. [1]
    M. Tannenbaum, Highlights from BNL-RHIC, arXiv:1201.5900 [INSPIRE].
  2. [2]
    B. Müller, J. Schukraft and B. Wyslouch, First results from Pb + Pb collisions at the LHC, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361 [arXiv:1202.3233] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Satz, The quark-gluon plasma: a short introduction, Nucl. Phys. A862-863 (2011) 4 [arXiv:1101.3937] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    HotQCD collaboration, A. Bazavov et al., Fluctuations and correlations of net baryon number, electric charge and strangeness: a comparison of lattice QCD results with the hadron resonance gas model, Phys. Rev. D 86 (2012) 034509 [arXiv:1203.0784] [INSPIRE].Google Scholar
  5. [5]
    A. Bazavov et al., Quark number susceptibilities at high temperatures, arXiv:1309.2317 [INSPIRE].
  6. [6]
    C. Schmidt, QCD bulk thermodynamics and conserved charge fluctuations with HISQ fermions, J. Phys. Conf. Ser. 432 (2013) 012013 [arXiv:1212.4283] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    BNL-Bielefeld collaboration, C. Schmidt, Baryon number and charge fluctuations from lattice QCD, Nucl. Phys. A 904-905 (2013) 865c [arXiv:1212.4278] [INSPIRE].Google Scholar
  8. [8]
    S. Borsányi et al., Fluctuations of conserved charges at finite temperature from lattice QCD, JHEP 01 (2012) 138 [arXiv:1112.4416] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Borsányi, Thermodynamics of the QCD transition from lattice, Nucl. Phys. A 904-905 (2013) 270c [arXiv:1210.6901] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Hands, P. Kenny, S. Kim and J.-I. Skullerud, Lattice study of dense matter with two colors and four flavors, Eur. Phys. J. A 47 (2011) 60 [arXiv:1101.4961] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Cotter, P. Giudice, S. Hands and J.-I. Skullerud, Towards the phase diagram of dense two-color matter, Phys. Rev. D 87 (2013) 034507 [arXiv:1210.4496] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Vuorinen, The pressure of QCD at finite temperatures and chemical potentials, Phys. Rev. D 68 (2003) 054017 [hep-ph/0305183] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Vuorinen, Quark number susceptibilities of hot QCD up to g 6 ln g, Phys. Rev. D 67 (2003) 074032 [hep-ph/0212283] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Vuorinen, The pressure of QCD at finite temperatures and chemical potentials, Phys. Rev. D 68 (2003) 054017 [hep-ph/0305183] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Ipp, K. Kajantie, A. Rebhan and A. Vuorinen, The pressure of deconfined QCD for all temperatures and quark chemical potentials, Phys. Rev. D 74 (2006) 045016 [hep-ph/0604060] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.-P. Blaizot, E. Iancu and A. Rebhan, Quark number susceptibilities from HTL resummed thermodynamics, Phys. Lett. B 523 (2001) 143 [hep-ph/0110369] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.-P. Blaizot, E. Iancu and A. Rebhan, Comparing different hard thermal loop approaches to quark number susceptibilities, Eur. Phys. J. C 27 (2003) 433 [hep-ph/0206280] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Chakraborty, M.G. Mustafa and M.H. Thoma, Quark number susceptibility in hard thermal loop approximation, Eur. Phys. J. C 23 (2002) 591 [hep-ph/0111022] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Chakraborty, M.G. Mustafa and M.H. Thoma, Quark number susceptibility, thermodynamic sum rule and hard thermal loop approximation, Phys. Rev. D 68 (2003) 085012 [hep-ph/0303009] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Haque, M.G. Mustafa and M.H. Thoma, Conserved density fluctuation and temporal correlation function in HTL perturbation theory, Phys. Rev. D 84 (2011) 054009 [arXiv:1103.3394] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Baier and K. Redlich, Hard thermal loop resummed pressure of a degenerate quark gluon plasma, Phys. Rev. Lett. 84 (2000) 2100 [hep-ph/9908372] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.O. Andersen and M. Strickland, The equation of state for dense QCD and quark stars, Phys. Rev. D 66 (2002) 105001 [hep-ph/0206196] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.O. Andersen, S. Mogliacci, N. Su and A. Vuorinen, Quark number susceptibilities from resummed perturbation theory, Phys. Rev. D 87 (2013) 074003 [arXiv:1210.0912] [INSPIRE].ADSGoogle Scholar
  24. [24]
    N. Haque, M.G. Mustafa and M. Strickland, Quark number susceptibilities from two-loop hard thermal loop perturbation theory, JHEP 07 (2013) 184 [arXiv:1302.3228] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Haque, M.G. Mustafa and M. Strickland, Two-loop HTL pressure at finite temperature and chemical potential, Phys. Rev. D 87 (2013) 105007 [arXiv:1212.1797] [INSPIRE].ADSGoogle Scholar
  26. [26]
    N. Haque, J.O. Andersen, M.G. Mustafa, M. Strickland and N. Su, Three-loop HTLpt pressure and susceptibilities at finite temperature and density, arXiv:1309.3968 [INSPIRE].
  27. [27]
    A. Ipp and A. Rebhan, Thermodynamics of large-N f QCD at finite chemical potential, JHEP 06 (2003) 032 [hep-ph/0305030] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Ipp, A. Rebhan and A. Vuorinen, Perturbative QCD at nonzero chemical potential: comparison with the large-N f limit and apparent convergence, Phys. Rev. D 69 (2004) 077901 [hep-ph/0311200] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Casalderrey-Solana and D. Mateos, Off-diagonal flavour susceptibilities from AdS/CFT, JHEP 08 (2012) 165 [arXiv:1202.2533] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Bhattacharyya, P. Deb, A. Lahiri and R. Ray, Susceptibilities with multi-quark interactions in PNJL model, Phys. Rev. D 82 (2010) 114028 [arXiv:1008.0768] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D.-K. He, X.-X. Ruan, Y. Jiang, W.-M. Sun and H.-S. Zong, A model study of quark-number susceptibility at finite chemical potential and temperature, Phys. Lett. B 680 (2009) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Ratti, S. Roessner and W. Weise, Quark number susceptibilities: lattice QCD versus PNJL model, Phys. Lett. B 649 (2007) 57 [hep-ph/0701091] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Shi and J. Liao, Conserved charge fluctuations and susceptibilities in strongly interacting matter, JHEP 06 (2013) 104 [arXiv:1304.7752] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.O. Andersen and M. Strickland, Mass expansions of screened perturbation theory, Phys. Rev. D 64 (2001) 105012 [hep-ph/0105214] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Seipt, M. Bluhm and B. Kampfer, Quark mass dependence of thermal excitations in QCD in one-loop approximation, J. Phys. G 36 (2009) 045003 [arXiv:0810.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.-P. Blaizot, E. Iancu and A. Rebhan, Thermodynamics of the high temperature quark gluon plasma, hep-ph/0303185 [INSPIRE].
  37. [37]
    U. Kraemmer and A. Rebhan, Advances in perturbative thermal field theory, Rept. Prog. Phys. 67 (2004) 351 [hep-ph/0310337] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    J.O. Andersen and M. Strickland, Resummation in hot field theories, Annals Phys. 317 (2005) 281 [hep-ph/0404164] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    J.O. Andersen, E. Braaten and M. Strickland, Hard thermal loop resummation of the thermodynamics of a hot gluon plasma, Phys. Rev. D 61 (2000) 014017 [hep-ph/9905337] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.O. Andersen, E. Braaten and M. Strickland, Hard thermal loop resummation of the free energy of a hot quark-gluon plasma, Phys. Rev. D 61 (2000) 074016 [hep-ph/9908323] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the Standard Model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J.O. Andersen, L.E. Leganger, M. Strickland and N. Su, Three-loop HTL QCD thermodynamics, JHEP 08 (2011) 053 [arXiv:1103.2528] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Vuorinen and L.G. Yaffe, Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high temperature, Phys. Rev. D 74 (2006) 025011 [hep-ph/0604100] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. de Forcrand, A. Kurkela and A. Vuorinen, Center-symmetric effective theory for high-temperature SU(2) Yang-Mills theory, Phys. Rev. D 77 (2008) 125014 [arXiv:0801.1566] [INSPIRE].ADSGoogle Scholar
  46. [46]
    T. Zhang, T. Brauner, A. Kurkela and A. Vuorinen, Two-color QCD via dimensional reduction, JHEP 02 (2012) 139 [arXiv:1112.2983] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, The pressure of hot QCD up to g 6 ln(1/g), Phys. Rev. D 67 (2003) 105008 [hep-ph/0211321] [INSPIRE].ADSGoogle Scholar
  48. [48]
    F. Di Renzo, M. Laine, V. Miccio, Y. Schröder and C. Torrero, The leading non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure, JHEP 07 (2006) 026 [hep-ph/0605042] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    A. Gynther, A. Kurkela and A. Vuorinen, The \( N_f^3 \) g 6 term in the pressure of hot QCD, Phys. Rev. D 80 (2009) 096002 [arXiv:0909.3521] [INSPIRE].ADSGoogle Scholar
  50. [50]
    Y. Schröder, A fresh look on three-loop sum-integrals, JHEP 08 (2012) 095 [arXiv:1207.5666] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Hart, M. Laine and O. Philipsen, Static correlation lengths in QCD at high temperatures and finite densities, Nucl. Phys. B 586 (2000) 443 [hep-ph/0004060] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Möller and Y. Schröder, Three-loop matching coefficients for hot QCD: reduction and gauge independence, JHEP 08 (2012) 025 [arXiv:1207.1309] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    J.-P. Blaizot, E. Iancu and A. Rebhan, On the apparent convergence of perturbative QCD at high temperature, Phys. Rev. D 68 (2003) 025011 [hep-ph/0303045] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J.O. Andersen, E. Braaten, E. Petitgirard and M. Strickland, HTL perturbation theory to two loops, Phys. Rev. D 66 (2002) 085016 [hep-ph/0205085] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Borsányi et al., QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2, JHEP 08 (2012) 053 [arXiv:1204.6710] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C. Allton et al., Thermodynamics of two flavor QCD to sixth order in quark chemical potential, Phys. Rev. D 71 (2005) 054508 [hep-lat/0501030] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.V. Gavai, S. Gupta and P. Majumdar, Susceptibilities and screening masses in two flavor QCD, Phys. Rev. D 65 (2002) 054506 [hep-lat/0110032] [INSPIRE].ADSGoogle Scholar
  59. [59]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, 3D SU(N) + adjoint Higgs theory and finite temperature QCD, Nucl. Phys. B 503 (1997) 357 [hep-ph/9704416] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Bazavov et al., Determination of α s from the QCD static energy, Phys. Rev. D 86 (2012) 114031 [arXiv:1205.6155] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Bazavov et al., Strangeness at high temperatures: from hadrons to quarks, Phys. Rev. Lett. 111 (2013) 082301 [arXiv:1304.7220] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    N. Haque, J.O. Andersen, M.G. Mustafa, M. Strickland and N. Su, in preparation.Google Scholar
  63. [63]
    F. Karsch, E. Laermann and A. Peikert, The pressure in two flavor, (2 + 1)-flavor and three flavor QCD, Phys. Lett. B 478 (2000) 447 [hep-lat/0002003] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Peikert, QCD thermodynamics with 2 + 1 quark flavours in lattice simulations, Ph.D. dissertation, Bielefeld Germany May 2000.Google Scholar
  65. [65]
    F. Karsch, E. Laermann and A. Peikert, Quark mass and flavor dependence of the QCD phase transition, Nucl. Phys. B 605 (2001) 579 [hep-lat/0012023] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
  67. [67]
    E. Braaten and E. Petitgirard, Solution to the three loop Φ derivable approximation for massless scalar thermodynamics, Phys. Rev. D 65 (2002) 085039 [hep-ph/0107118] [INSPIRE].ADSGoogle Scholar
  68. [68]
    I. Kondrashuk, S. Mogliacci and Y. Schröder, in preparation.Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Sylvain Mogliacci
    • 1
    Email author
  • Jens O. Andersen
    • 2
  • Michael Strickland
    • 3
  • Nan Su
    • 1
  • Aleksi Vuorinen
    • 4
  1. 1.Faculty of PhysicsUniversity of BielefeldBielefeldGermany
  2. 2.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Department of PhysicsKent State UniversityKentUnited States
  4. 4.Helsinki Institute of Physics and Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations