Journal of High Energy Physics

, 2013:47 | Cite as

The excitation spectrum of rotating strings with masses at the ends



We compute the spectrum of excitations of the rotating Nambu-Goto string with masses at the ends. We find interesting quasi-massless modes in the limit of slow rotation and comment on the nontrivial relation between world-sheet and target space energy.


Bosonic Strings Long strings Phenomenological Models 


  1. [1]
    Quarkonium Working Group collaboration, N. Brambilla et al., Heavy quarkonium physics, hep-ph/0412158 [INSPIRE].
  2. [2]
    M. Teper, Large-N and confining flux tubes as stringsA view from the lattice, Acta Phys. Polon. B 40 (2009) 3249 [arXiv:0912.3339] [INSPIRE].Google Scholar
  3. [3]
    M. Lüscher and P. Weisz, Quark confinement and the bosonic string, JHEP 07 (2002) 049 [hep-lat/0207003] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Arvis, The exact \( q\overline{q} \) potential in Nambu string theory, Phys. Lett. B 127 (1983) 106 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    O. Aharony and Z. Komargodski, The effective theory of long strings, JHEP 05 (2013) 118 [arXiv:1302.6257] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    A. Chodos and C.B. Thorn, Making the massless string massive, Nucl. Phys. B 72 (1974) 509 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Hadasz, Casimir energy of the Nambu-Goto string with Gauss-Bonnet term and point-like masses at the ends, Acta Phys. Polon. B 30 (1999) 2679 [hep-th/9907172] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    V. Nesterenko, Is there tachyon in the Nambu-Goto string with massive ends?, Z. Phys. C 51 (1991) 643 [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Baker and R. Steinke, Semiclassical quantization of effective string theory and Regge trajectories, Phys. Rev. D 65 (2002) 094042 [hep-th/0201169] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Scherk, An introduction to the theory of dual models and strings, Rev. Mod. Phys. 47 (1975) 123 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstones theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Bahns, K. Rejzner and J. Zahn, The effective theory of strings, arXiv:1204.6263 [INSPIRE].
  13. [13]
    H. Kleinert, The membrane properties of condensing strings, Phys. Lett. B 174 (1986) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover, New York U.S.A. (1972).Google Scholar
  15. [15]
    M. Lüscher, Symmetry breaking aspects of the roughening transition in gauge theories, Nucl. Phys. B 180 (1981) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Fakultät für PhysikUniversität WienWienAustria

Personalised recommendations