Advertisement

Journal of High Energy Physics

, 2013:44 | Cite as

MSSM-like models on \( {{\mathbb{Z}}_8} \) toroidal orbifolds

  • Stefan Groot Nibbelink
  • Orestis Loukas
Article

Abstract

We extend the promising heterotic string searches for MSSM-like models to \( {{\mathbb{Z}}_8} \) orbifolds. There exist five inequivalent \( {{\mathbb{Z}}_8} \) toroidal orbifolds distinguished by two types of twists that act on five different torus lattices; one of which cannot be represented as a Lie-algebra root lattice. Contrary to previous investigations, we study the consequences of the different underlying orbifold torus lattices. Therefore, rather than focussing on one particular geometry, we perform systematic model searches on these five \( {{\mathbb{Z}}_8} \) orbifolds simultaneously, taking all possible inequivalent SU(5) and SO(10) gauge shifts as our starting point. We present cumulative tables and figures comparing the chiral SM and vector-like exotic spectra on these geometries.

Keywords

Strings and branes phenomenology 

References

  1. [1]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The heterotic string, Phys. Rev. Lett. 54 (1985) 502 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  8. [8]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle standard models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A.E. Faraggi, D.V. Nanopoulos and K.-j. Yuan, A standard like model in the 4D free fermionic string formulation, Nucl. Phys. B 335 (1990) 347 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Dijkstra, L. Huiszoon and A. Schellekens, Chiral supersymmetric standard model spectra from orientifolds of Gepner models, Phys. Lett. B 609 (2005) 408 [hep-th/0403196] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    T. Dijkstra, L. Huiszoon and A. Schellekens, Supersymmetric standard model spectra from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2., Nucl. Phys. B 274 (1986) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    L.E. Ibáñez, H.P. Nilles and F. Quevedo, Orbifolds and Wilson lines, Phys. Lett. B 187 (1987) 25 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L.E. Ibáñez, J. Mas, H.-P. Nilles and F. Quevedo, Heterotic strings in symmetric and asymmetric orbifold backgrounds, Nucl. Phys. B 301 (1988) 157 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D. Bailin and A. Love, Orbifold compactifications of string theory, Phys. Rept 315 (1999) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    K.S. Choi and J.E. Kim Quarks and leptons from orbifolded superstring, Springer, Germany (2006)zbMATHGoogle Scholar
  18. [18]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    O. Lebedev et al., A Mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z 6 orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D.K.M. Pena, H.P. Nilles and P.-K. Oehlmann, A zip-code for quarks, leptons and Higgs bosons, JHEP 12 (2012) 024 [arXiv:1209.6041] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.E. Kim and B. Kyae, String MSSM through flipped SU(5) from Z(12) orbifold, hep-th/0608085 [INSPIRE].
  24. [24]
    J.E. Kim, J.-H. Kim and B. Kyae, Superstring standard model from Z(12 − I) orbifold compactification with and without exotics and effective R-parity, JHEP 06 (2007) 034 [hep-ph/0702278] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S. Groot Nibbelink, J. Held, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic Z(6 − II) MSSM orbifolds in blowup, JHEP 03 (2009) 005 [arXiv:0901.3059] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Blaszczyk et al., A Z 2 × Z 2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    H. Kawabe, T. Kobayashi and N. Ohtsubo, Study of minimal string unification in Z(8) orbifold models, Phys. Lett. B 322 (1994) 331 [hep-th/9309069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    H. Kawabe, T. Kobayashi and N. Ohtsubo, Minimal string unification and constraint on hidden sector, Nucl. Phys. B 434 (1995) 210 [hep-ph/9405420] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Y. Katsuki et al., Gauge groups of Z(N) orbifold models, Prog. Theor. Phys. 82 (1989) 171.ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M. Fischer, M. Ratz, J. Torrado and P.K. Vaudrevange, Classification of symmetric toroidal orbifolds, JHEP 01 (2013) 084 [arXiv:1209.3906] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    F. Ploger, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Mirage torsion, JHEP 04 (2007) 063 [hep-th/0702176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    B.C. Hall, An elementary introduction to groups and representations, math-ph/0005032 [INSPIRE].
  33. [33]
    L.E. Ibáñez, H.P. Nilles and F. Quevedo, Reducing the rank of the gauge group in orbifold compactifications of the heterotic string, Phys. Lett. B 192 (1987) 332 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Casas, E. Katehou and C. Muñoz, U (1) charges in orbifolds: anomaly cancellation and phenomenological consequences, Nucl. Phys. B 317 (1989) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    H.P. Nilles, S. Ramos-Sanchez, P.K. Vaudrevange and A. Wingerter, The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, Comput. Phys. Commun. 183 (2012) 1363 [arXiv:1110.5229] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    H.P. Nilles, Dynamically broken supergravity and the hierarchy problem, Phys. Lett. B 115 (1982) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Ferrara, L. Girardello and H.P. Nilles, Breakdown of local supersymmetry through gauge fermion condensates, Phys. Lett. B 125 (1983) 457 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical PhysicsLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Physics DepartmentNational Technical University of AthensAthensGreece

Personalised recommendations