Journal of High Energy Physics

, 2013:25 | Cite as

Quantum corrected phase diagram of holographic fermions

  • Mariya V. Medvedyeva
  • Elena Gubankova
  • Mihailo Čubrović
  • Koenraad Schalm
  • Jan Zaanen


We study the phases of strongly correlated electron systems in two spatial dimensions in the framework of AdS4/CFT3 correspondence. The AdS (gravity) model consists of a Dirac fermion coupled to electromagnetic field and gravity. To classify the ground states of strongly correlated electrons on the CFT side and to construct the full phase diagram of the system, we construct a quantum many-body model of bulk fermion dynamics, based on the WKB approximation to the Dirac equation. At low temperatures, we find a quantum corrected approximation to the electron star where the edge is resolved in terms of wave functions extended fully through AdS. At high temperatures, the system exhibits a first order thermal phase transition to a charged AdS-RN black hole in the bulk and the emergence of local quantum criticality on the CFT side. This change from the third order transition experienced by the semi-classical electron star restores the intuition that the transition between the critical AdS-RN liquid and the finite density Fermi system is of van der Waals liquid–gas type.


AdS-CFT Correspondence Black Holes Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefMATHGoogle Scholar
  3. [3]
    H.V. Löhneysen, A. Rosch, M. Vojta and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79 (2007) 1015 [cond-mat/0606317].ADSCrossRefGoogle Scholar
  4. [4]
    M. Gurvitch and A.T. Fiory, Resistivity of La1.825 Sr0.175 CuO4 and Y Ba2 Cu3 O7 to 1100 K: Absence of saturation and its implications, Phys. Rev. Lett. 59 (1987) 1337.ADSCrossRefGoogle Scholar
  5. [5]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    O. DeWolfe, S.S. Gubser and C. Rosen, Fermi surfaces in maximal gauged supergravity, Phys. Rev. Lett. 108 (2012) 251601 [arXiv:1112.3036] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and electric AdS solutions in string-and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Čubrović, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J.P. Gauntlett, J. Sonner and D. Waldram, Universal fermionic spectral functions from string theory, Phys. Rev. Lett. 107 (2011) 241601 [arXiv:1106.4694] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.A. Hartnoll and P. Petrov, Electron star birth: a continuous phase transition at nonzero density, Phys. Rev. Lett. 106 (2011) 121601 [arXiv:1011.6469] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Čubrović, J. Zaanen and K. Schalm, Constructing the AdS Dual of a Fermi Liquid: AdS Black Holes with Dirac Hair, JHEP 10 (2011) 017 [arXiv:1012.5681] [INSPIRE].MathSciNetMATHGoogle Scholar
  14. [14]
    S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84 (2011) 066009 [arXiv:1107.5321] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R.C. Tolman, Static solutions of Einsteins field equations for spheres of fluid, Phys. Rev. D 55 (1939) 364.ADSCrossRefMATHGoogle Scholar
  16. [16]
    A. Allais, J. McGreevy and S.J. Suh, A quantum electron star, Phys. Rev. Lett. 108 (2012) 231602 [arXiv:1202.5308] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.A. Hartnoll, D.M. Hofman and D. Vegh, Stellar spectroscopy: Fermions and holographic Lifshitz criticality, JHEP 08 (2011) 096 [arXiv:1105.3197] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    M. Cubrovic, Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Spectral probes of the holographic Fermi groundstate: dialing between the electron star and AdS Dirac hair, Phys. Rev. D 84 (2011) 086002 [arXiv:1106.1798] [INSPIRE].ADSGoogle Scholar
  19. [19]
    N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E. Gubankova et al., Holographic fermions in external magnetic fields, Phys. Rev. D 84 (2011) 106003 [arXiv:1011.4051] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D.F. Mross, J. McGreevy, H. Liu and T. Senthil, A controlled expansion for certain non-Fermi liquid metals, Phys. Rev. B 82 (2010) 045121 [arXiv:1003.0894] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057 [arXiv:0904.3922] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Nonrelativistic theory, Nauka, Moskva Russia (1989).Google Scholar
  26. [26]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Strange metal transport realized by gauge/gravity duality, Science 329 (2010) 1043 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Hartman and S.A. Hartnoll, Cooper pairing near charged black holes, JHEP 06 (2010) 005 [arXiv:1003.1918] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    L.D. Landau and E.M. Lifshitz, Statistical Physics 2, Nauka, Moskva Russia (1978).Google Scholar
  30. [30]
    N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Voskresensky and A. Senatorov, Rearrangement of the vacuum in strong electric and gravitational fields, Sov. J. Nucl. Phys. 36 (1982) 208 [INSPIRE].Google Scholar
  32. [32]
    J.H. She and J. Zaanen, BCS Superconductivity in Quantum Critical Metals, Phys. Rev. B 80 (2009) 184518.ADSCrossRefGoogle Scholar
  33. [33]
    V.G.M. Puletti, S. Nowling, L. Thorlacius and T. Zingg, Holographic metals at finite temperature, JHEP 01 (2011) 117 [arXiv:1011.6261] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84 (2011) 026001 [arXiv:1104.5022] [INSPIRE].ADSGoogle Scholar
  36. [36]
    N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].
  37. [37]
    M. Čubrović, Holography, Fermi surfaces and criticality, Ph.D. Thesis, Leiden Univeristy, Leiden Netherlands (2013).Google Scholar
  38. [38]
    A. Allais and J. McGreevy, How to construct a gravitating quantum electron star, Phys. Rev. D 88 (2013) 066006 [arXiv:1306.6075] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Mariya V. Medvedyeva
    • 1
  • Elena Gubankova
    • 2
  • Mihailo Čubrović
    • 3
  • Koenraad Schalm
    • 3
  • Jan Zaanen
    • 3
  1. 1.Department of PhysicsGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Institute for Theoretical PhysicsJ.W. Goethe-UniversityFrankfurt am MainGermany
  3. 3.Instituut Lorentz, Delta-Institute for Theoretical PhysicsLeiden UniversityLeidenThe Netherlands

Personalised recommendations