Journal of High Energy Physics

, 2013:20 | Cite as

Entanglement temperature and entanglement entropy of excited states

  • Gabriel WongEmail author
  • Israel Klich
  • Leopoldo A. Pando Zayas
  • Diana Vaman


We derive a general relation between the ground state entanglement Hamiltonian and the physical stress tensor within the path integral formalism. For spherical entangling surfaces in a CFT, we reproduce the local ground state entanglement Hamiltonian derived by Casini, Huerta and Myers. The resulting reduced density matrix can be characterized by a spatially varying “entanglement temperature”. Using the entanglement Hamiltonian, we calculate the first order change in the entanglement entropy due to changes in conserved charges of the ground state, and find a local first law-like relation for the entanglement entropy. Our approach provides a field theory derivation and generalization of recent results obtained by holographic techniques. However, we note a discrepancy between our field theoretically derived results for the entanglement entropy of excited states with a non-uniform energy density and current holographic results in the literature. Finally, we give a CFT derivation of a set of constraint equations obeyed by the entanglement entropy of excited states in any dimension. Previously, these equations were derived in the context of holography.


Field Theories in Lower Dimensions AdS-CFT Correspondence Conformal and W Symmetry Field Theories in Higher Dimensions 


  1. [1]
    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  2. [2]
    H.C. Jiang, Z. Wang and L. Balents, Identifying topological order by entanglement entropy, Nature Phys. 8 (2012) 902 [arXiv:1205.4289] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Li and F. Haldane, Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states, Phys. Rev. Lett. 101 (2008) 010504 [arXiv:0805.0332] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.M. Läuchli, E.J. Bergholtz, J. Suorsa and M. Haque, Disentangling entanglement spectra of fractional quantum Hall states on torus geometries, Phys. Rev. Lett. 104 (2010) 156404 [arXiv:0911.5477].ADSCrossRefGoogle Scholar
  5. [5]
    A. Chandran, M. Hermanns, N. Regnault and B.A. Bernevig, Bulk-edge correspondence in entanglement spectra, Phys. Rev. B 84 (2011) 205136 [arXiv:1102.2218].ADSCrossRefGoogle Scholar
  6. [6]
    X.-L. Qi, H. Katsura and A.W.W. Ludwig, General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states, Phys. Rev. Lett. 108 (2012) 196402 [arXiv:1103.5437].ADSCrossRefGoogle Scholar
  7. [7]
    A.M. Turner, Y. Zhang and A. Vishwanath, Entanglement and inversion symmetry in topological insulators, Phys. Rev. B 82 (2010) 241102.ADSCrossRefGoogle Scholar
  8. [8]
    L. Fidkowski, T.S. Jackson and I. Klich, Model characterization of gapless edge modes of topological insulators using intermediate Brillouin-zone functions, Phys. Rev. Lett. 107 (2011) 036601 [arXiv:1101.0320].ADSCrossRefGoogle Scholar
  9. [9]
    J.J. Bisognano and E.H. Wichmann, On the duality condition for a Hermitian scalar field, J. Math. Phys. 16 (1975) 985 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.J. Bisognano and E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    W.G. Unruh and R.M. Wald, What happens when an accelerating observer detects a Rindler particle, Phys. Rev. D 29 (1984) 1047 [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic local quenches and entanglement density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of entanglement entropy from Einstein equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Bhattacharya and T. Takayanagi, Entropic counterpart of perturbative Einstein equation, JHEP 10 (2013) 219 [arXiv:1308.3792] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E. Bianchi, Horizon entanglement entropy and universality of the graviton coupling, arXiv:1211.0522 [INSPIRE].
  18. [18]
    J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  20. [20]
    L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution: the holographic universe, World Scientific, Hackensack U.S.A. (2005) [INSPIRE].
  21. [21]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].
  22. [22]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  23. [23]
    F. Larsen and F. Wilczek, Geometric entropy, wave functionals and fermions, Annals Phys. 243 (1995) 280 [hep-th/9408089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Rényi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    M.I. Berganza, F.C. Alcaraz and G. Sierra, Entanglement of excited states in critical spin chains, J. Stat. Mech. (2012) P01016 [arXiv:1109.5673] [INSPIRE].
  26. [26]
    F.C. Alcaraz, M.I. Berganza and G. Sierra, Entanglement of low-energy excitations in conformal field theory, Phys. Rev. Lett. 106 (2011) 201601 [arXiv:1101.2881] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math . Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    N. Lashkari, M.B. McDermott and M. van Raamsdonk, Gravitational dynamics from entanglementthermodynamics”, arXiv:1308.3716 [INSPIRE].
  32. [32]
    B. Swingle, Structure of entanglement in regulated Lorentz invariant field theories, arXiv:1304.6402 [INSPIRE].
  33. [33]
    A. Bhattacharyya and A. Sinha, Entanglement entropy from the holographic stress tensor, Class. Quant. Grav. 30 (2013) 235032 [arXiv:1303.1884] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J.L. Cardy, Conformal invariance and statistical mechanics, in Les Houches, Session XLIX. Champs, Cordes et Phénomènes Critiques: Fields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin eds., Elsevier Science Publishers (1988), pp. 169–245.Google Scholar
  35. [35]
    E. Benedict and S.-Y. Pi, Entanglement entropy of nontrivial states, Annals Phys. 245 (1996) 209 [hep-th/9505121] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Gabriel Wong
    • 1
    Email author
  • Israel Klich
    • 1
  • Leopoldo A. Pando Zayas
    • 2
  • Diana Vaman
    • 1
  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleUnited States
  2. 2.Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborUnited States

Personalised recommendations