Advertisement

QCD effects in mono-jet searches for dark matter

  • Ulrich Haisch
  • Felix Kahlhoefer
  • Emanuele Re
Article

Abstract

LHC searches for missing transverse energy in association with a jet allow to place strong bounds on the interactions between dark matter and quarks. In this article, we present an extension of the POWHEG BOX capable of calculating the underlying cross sections at the next-to-leading order level. This approach enables us to consistently include the effects of parton showering and to apply realistic experimental cuts. We find significant differences from a fixed-order analysis that neglects parton showering effects. In particular, next-to-leading order corrections do not lead to a significant enhancement of the mono-jet cross section once a veto on additional jets is imposed. Nevertheless, these corrections reduce the theoretical uncertainties of the signal prediction and therefore improve the reliability of the derived bounds. We present our results in terms of simple rescaling factors, which can be directly applied to existing experimental analyses and discuss the impact of changing experimental cuts.

Keywords

Phenomenological Models NLO Computations 

References

  1. [1]
    CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    DAMA and LIBRA collaborations, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].Google Scholar
  4. [4]
    C. Aalseth et al., Search for an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Angloher et al., Results from 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CDMS collaboration, R. Agnese et al., Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. (2013) [arXiv:1304.4279] [INSPIRE].
  7. [7]
    CDF collaboration, Search for Extra Dimensions in Jets+Missing Energy in RunII, http://www-cdf.fnal.gov/physics/exotic/r2a/20070322.monojet/public/ykk.html.
  8. [8]
    CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].ADSGoogle Scholar
  9. [9]
    CMS collaboration, Search for new physics in monojet events in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-048 (2012).
  10. [10]
    CMS collaboration, Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy, Phys. Rev. Lett. 108 (2012) 261803 [arXiv:1204.0821] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ATLAS collaboration, Search for New Phenomena in Monojet plus Missing Transverse Momentum Final States using 10 fb −1 of pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
  13. [13]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 011802 [arXiv:1209.4625] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Goodman et al., Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011)185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Rajaraman, W. Shepherd, T.M. Tait and A.M. Wijangco, LHC Bounds on Interactions of Dark Matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Goodman et al., Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Zhou, D. Berge and D. Whiteson, Mono-everything: combined limits on dark matter production at colliders from multiple final states, arXiv:1302.3619 [INSPIRE].
  21. [21]
    W. Giele and E.N. Glover, Higher order corrections to jet cross-sections in e + e annihilation, Phys. Rev. D 46 (1992) 1980 [INSPIRE].ADSGoogle Scholar
  22. [22]
    U. Baur, T. Han and J. Ohnemus, QCD corrections and anomalous couplings in Zγ production at hadron colliders, Phys. Rev. D 57 (1998) 2823 [hep-ph/9710416] [INSPIRE].ADSGoogle Scholar
  23. [23]
    U. Haisch, F. Kahlhoefer and J. Unwin, The impact of heavy-quark loops on LHC dark matter searches, JHEP 07 (2013) 125 [arXiv:1208.4605] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P.J. Fox and C. Williams, Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.M. Campbell, R.K. Ellis and C. Williams, http://mcfm.fnal.gov.
  26. [26]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    H. Dreiner, D. Schmeier and J. Tattersall, Contact Interactions Probe Effective Dark Matter Models at the LHC, Europhys. Lett. 102 (2013) 51001 [arXiv:1303.3348] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B. Batell, J. Pradler and M. Spannowsky, Dark Matter from Minimal Flavor Violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom at the LHC, Phys. Rev. D 88 (2013) 063510 [arXiv:1303.6638] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [INSPIRE].
  36. [36]
    J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter I: model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  38. [38]
    P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].ADSGoogle Scholar
  39. [39]
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, arXiv:1307.2253 [INSPIRE].
  40. [40]
    S. Profumo, W. Shepherd and T. Tait, The Pitfalls of Dark Crossings, arXiv:1307.6277 [INSPIRE].
  41. [41]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond Effective Field Theory for Dark Matter Searches at the LHC, arXiv:1308.6799 [INSPIRE].
  42. [42]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Frixione and G. Ridolfi, Jet photoproduction at HERA, Nucl. Phys. B 507 (1997) 315 [hep-ph/9707345] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Banfi and M. Dasgupta, Dijet rates with symmetric E(t) cuts, JHEP 01 (2004) 027 [hep-ph/0312108] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Thorne and R. Roberts, An ordered analysis of heavy flavor production in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871 [hep-ph/9709442] [INSPIRE].ADSGoogle Scholar
  51. [51]
    R. Thorne, A variable-flavor number scheme for NNLO, Phys. Rev. D 73 (2006) 054019 [hep-ph/0601245] [INSPIRE].ADSGoogle Scholar
  52. [52]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].ADSGoogle Scholar
  54. [54]
    J.C. Collins, Hard scattering factorization with heavy quarks: A General treatment, Phys. Rev. D 58 (1998) 094002 [hep-ph/9806259] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R.D. Ball et al., Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    J.C. Collins, F. Wilczek and A. Zee, Low-Energy Manifestations of Heavy Particles: Application to the Neutral Current, Phys. Rev. D 18 (1978) 242 [INSPIRE].ADSGoogle Scholar
  60. [60]
    G. Rodrigo, Multigluonic scattering amplitudes of heavy quarks, JHEP 09 (2005) 079 [hep-ph/0508138] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Badger, J.M. Campbell and R. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP 03 (2011) 027 [arXiv:1011.6647] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    K. Hagiwara and D. Zeppenfeld, Helicity Amplitudes for Heavy Lepton Production in e + e Annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Hagiwara and D. Zeppenfeld, Amplitudes for Multiparton Processes Involving a Current at e + e , e ± p and Hadron Colliders, Nucl. Phys. B 313 (1989) 560 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D. Maître and P. Mastrolia, S@M, a Mathematica Implementation of the Spinor-Helicity Formalism, Comput. Phys. Commun. 179 (2008) 501 [arXiv:0710.5559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Ulrich Haisch
    • 1
    • 2
  • Felix Kahlhoefer
    • 1
    • 2
  • Emanuele Re
    • 1
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUnited Kingdom
  2. 2.KITPUniversity of California Santa BarbaraSanta BarbaraUnited States

Personalised recommendations