Advertisement

Journal of High Energy Physics

, 2012:123 | Cite as

Global fit to three neutrino mixing: critical look at present precision

  • M. C. Gonzalez-Garcia
  • Michele Maltoni
  • Jordi Salvado
  • Thomas Schwetz
Article

Abstract

We present an up-to-date global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino oscillations. We provide results on the determination of θ 13 from global data and discuss the dependence on the choice of reactor fluxes. We study in detail the statistical significance of a possible deviation of θ 23 from maximal mixing, the determination of its octant, the ordering of the mass states, and the sensitivity to the CP violating phase, and discuss the role of various complementary data sets in those respects.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

References

  1. [1]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  2. [2]
    V. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  5. [5]
    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.M. Bilenky, J. Hosek and S. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].ADSGoogle Scholar
  7. [7]
    P. Langacker, S. Petcov, G. Steigman and S. Toshev, On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, Nucl. Phys. B 282 (1987) 589 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C.G. Garcia, M. Maltoni, T. Schwetz and J. Salvado, NuFit webpage, http://www.nu-fit.org.
  14. [14]
    G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Machado, H. Minakata, H. Nunokawa and R. Zukanovich Funchal, Combining accelerator and reactor measurements of θ 13: the first result, JHEP 05 (2012) 023 [arXiv:1111.3330] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Bergstrom, Bayesian evidence for non-zero θ 13 and CP-violation in neutrino oscillations, JHEP 08 (2012) 163 [arXiv:1205.4404] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Itow. Atmospheric neutrinos. Results from running experiments, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).Google Scholar
  19. [19]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande i, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K2K collaboration, M. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [INSPIRE] .ADSGoogle Scholar
  21. [21]
    R. Nichols. Final MINOS results, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).Google Scholar
  22. [22]
    MINOS collaboration, P. Adamson et al., An improved measurement of muon antineutrino disappearance in MINOS, Phys. Rev. Lett. 108 (2012) 191801 [arXiv:1202.2772] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Sakashita. Results from T2K, talk given at the 36th International Conference on High Energy Physics, Melbourne, Australia, July 4-11 (2012).Google Scholar
  24. [24]
    T2K collaboration, K. Abe et al., First muon-neutrino disappearance study with an off-axis beam, Phys. Rev. D 85 (2012) 031103 [arXiv:1201.1386] [INSPIRE].ADSGoogle Scholar
  25. [25]
    T. Nakaya. New results from T2K, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).Google Scholar
  26. [26]
    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Ishitsuka. Double Chooz results, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).Google Scholar
  30. [30]
    D. Dwyer. Improved measurement of electron-antineutrino disappearance at Daya Bay, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, June 3-9 (2012).Google Scholar
  31. [31]
    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].ADSGoogle Scholar
  32. [32]
    B. Cleveland, T. Daily, J. Davis, Raymond, J.R. Distel, K. Lande, et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].
  33. [33]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSGoogle Scholar
  34. [34]
    SAGE collaboration, J. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].ADSGoogle Scholar
  36. [36]
    SNO collaboration, B. Aharmim et al., Measurement of the ν e and total B-8 solar neutrino fluxes with the Sudbury neutrino observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].ADSGoogle Scholar
  37. [37]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury neutrino observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].ADSGoogle Scholar
  38. [38]
    SNO collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the Sudbury neutrino observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    SNO collaboration, B. Aharmim et al., Combined analysis of all three phases of solar neutrino data from the Sudbury neutrino observatory, arXiv:1109.0763 [INSPIRE].
  40. [40]
    G. Bellini, J. Benziger, D. Bick, S. Bonetti, G. Bonfini, et al., Precision measurement of the 7Be solar neutrino interaction rate in borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].ADSGoogle Scholar
  42. [42]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  43. [43]
    M. Gonzalez-Garcia and C. Pena-Garay, Three neutrino mixing after the first results from K2K and KamLAND, Phys. Rev. D 68 (2003) 093003 [hep-ph/0306001] [INSPIRE].ADSGoogle Scholar
  44. [44]
    K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from U-235 thermal neutron fission products up to 9.5 MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G. Mention, M. Fechner, T. Lasserre, T. Mueller, D. Lhuillier, et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    E. Ciuffoli, J. Evslin and H. Li, The reactor anomaly after Daya Bay and RENO, arXiv:1205.5499 [INSPIRE].
  49. [49]
    Y. Declais, H. de Kerret, B. Lefievre, M. Obolensky, A. Etenko, et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Kuvshinnikov, L. Mikaelyan, S. Nikolaev, M. Skorokhvatov and A. Etenko, Measuring the anti-electron-neutrino + pN + e + cross-section and β decay axial constant in a new experiment at Rovno NPP reactor. (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].ADSGoogle Scholar
  51. [51]
    Y. Declais, J. Favier, A. Metref, H. Pessard, B. Achkar, et al., Search for neutrino oscillations at 15 meters, 40 meters and 95 meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  52. [52]
    G. Vidyakin, V. Vyrodov, I. Gurevich, Y. Kozlov, V. Martemyanov, et al., Detection of anti-neutrinos in the flux from two reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].Google Scholar
  53. [53]
    G. Vidyakin, V. Vyrodov, Y. Kozlov, A. Martemyanov, V. Martemyanov, et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].ADSGoogle Scholar
  54. [54]
    H. Kwon, F. Boehm, A. Hahn, H. Henrikson, J. Vuilleumier, et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].ADSGoogle Scholar
  55. [55]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino oscillation experiments at the Gosgen nuclear power reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].ADSGoogle Scholar
  56. [56]
    Z. Greenwood, W. Kropp, M. Mandelkern, S. Nakamura, E. Pasierb-Love, et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].ADSGoogle Scholar
  57. [57]
    A. Afonin, S. Ketov, V. Kopeikin, L. Mikaelyan, M. Skorokhvatov, et al., A study of the reaction anti-electron-neutrino + pe + + N on a nuclear reactor, Sov. Phys. JETP 67 (1988)213 [INSPIRE].Google Scholar
  58. [58]
    S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Learned, S.T. Dye, S. Pakvasa and R.C. Svoboda, Determination of neutrino mass hierarchy and θ 13 with a remote detector of reactor antineutrinos, Phys. Rev. D 78 (2008) 071302 [hep-ex/0612022] [INSPIRE].ADSGoogle Scholar
  60. [60]
    P. Ghoshal and S. Petcov, Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 03 (2011) 058 [arXiv:1011.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    T. Bezerra, H. Furuta and F. Suekane, Measurement of effective \( \varDelta m_{31}^2 \) using baseline differences of Daya Bay, RENO and double CHOOZ reactor neutrino experiments, arXiv:1206.6017 [INSPIRE].
  62. [62]
    G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Neutrino masses and mixing: 2008 status, Nucl. Phys. Proc. Suppl. 188 (2009) 27 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Schwetz, M. Tortola and J.W. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero theta (13), PoS IDM2008 (2008) 072 [arXiv:0812.3161] [INSPIRE].Google Scholar
  66. [66]
    A. Balantekin and D. Yilmaz, Contrasting solar and reactor neutrinos with a non-zero value of θ 13, J. Phys. G 35 (2008) 075007 [arXiv:0804.3345] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Serenelli, S. Basu, J.W. Ferguson and M. Asplund, New solar composition: the problem with solar models revisited, Astrophys. J. 705 (2009) L123 [arXiv:0909.2668] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J.N. Bahcall, Gallium solar neutrino experiments: absorption cross-sections, neutrino spectra and predicted event rates, Phys. Rev. C 56 (1997) 3391 [hep-ph/9710491] [INSPIRE].ADSGoogle Scholar
  70. [70]
    H. Minakata, H. Sugiyama, O. Yasuda, K. Inoue and F. Suekane, Reactor measurement of θ 13 and its complementarity to long baseline experiments, Phys. Rev. D 68 (2003) 033017 [Erratum ibid. D 70 (2004) 059901] [hep-ph/0211111] [INSPIRE].
  71. [71]
    P. Huber, M. Lindner, T. Schwetz and W. Winter, Reactor neutrino experiments compared to superbeams, Nucl. Phys. B 665 (2003) 487 [hep-ph/0303232] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G.L. Fogli and E. Lisi, Tests of three flavor mixing in long baseline neutrino oscillation experiments, Phys. Rev. D 54 (1996) 3667 [hep-ph/9604415] [INSPIRE].ADSGoogle Scholar
  73. [73]
    K.B.M. Mahn and M.H. Shaevitz, Comparisons and combinations of reactor and long-baseline neutrino oscillation measurements, Int. J. Mod. Phys. A 21 (2006) 3825 [hep-ex/0409028] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A. Cervera, A. Donini, M. Gavela, J. Gomez Cadenas, P. Hernández, et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731-732] [hep-ph/0002108] [INSPIRE].
  75. [75]
    M. Freund, Analytic approximations for three neutrino oscillation parameters and probabilities in matter, Phys. Rev. D 64 (2001) 053003 [hep-ph/0103300] [INSPIRE].ADSGoogle Scholar
  76. [76]
    E.K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  78. [78]
    S. Mikheev and A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].Google Scholar
  79. [79]
    NOvA collaboration, D. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study ν μν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
  80. [80]
    J. Thomas. MINOS and perspectives for long-baseline experiments in the U.S., talk given at Neutrinos at the forefront of elementary particle physics and astrophysics, Lyon France, Oct. 22-24 (2012).Google Scholar
  81. [81]
    V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE].ADSGoogle Scholar
  82. [82]
    O. Peres and A.Y. Smirnov, Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and CP-violation, Nucl. Phys. B 680 (2004) 479 [hep-ph/0309312] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    S. Petcov, Diffractive-like (or parametric resonance-like?) enhancement of the Earth (day-night) effect for solar neutrinos crossing the Earth core, Phys. Lett. B 434 (1998) 321 [hep-ph/9805262] [INSPIRE].ADSGoogle Scholar
  84. [84]
    E.K. Akhmedov, A. Dighe, P. Lipari and A. Smirnov, Atmospheric neutrinos at Super-Kamiokande and parametric resonance in neutrino oscillations, Nucl. Phys. B 542 (1999) 3 [hep-ph/9808270] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    E.K. Akhmedov, Parametric resonance of neutrino oscillations and passage of solar and atmospheric neutrinos through the Earth, Nucl. Phys. B 538 (1999) 25 [hep-ph/9805272] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    M. Chizhov, M. Maris and S. Petcov, On the oscillation length resonance in the transitions of solar and atmospheric neutrinos crossing the Earth core, hep-ph/9810501 [INSPIRE].
  87. [87]
    M. Chizhov and S. Petcov, New conditions for a total neutrino conversion in a medium, Phys. Rev. Lett. 83 (1999) 1096 [hep-ph/9903399] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    E.K. Akhmedov, M. Maltoni and A.Y. Smirnov, 1-3 leptonic mixing and the neutrino oscillograms of the Earth, JHEP 05 (2007) 077 [hep-ph/0612285] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    C. Kim and U. Lee, Comment on the possible electron neutrino excess in the Super-Kamiokande atmospheric neutrino experiment, Phys. Lett. B 444 (1998) 204 [hep-ph/9809491] [INSPIRE].ADSGoogle Scholar
  90. [90]
    O. Peres and A.Y. Smirnov, Testing the solar neutrino conversion with atmospheric neutrinos, Phys. Lett. B 456 (1999) 204 [hep-ph/9902312] [INSPIRE].ADSGoogle Scholar
  91. [91]
    M. Gonzalez-Garcia, M. Maltoni and A.Y. Smirnov, Measuring the deviation of the 2-3 lepton mixing from maximal with atmospheric neutrinos, Phys. Rev. D 70 (2004) 093005 [hep-ph/0408170] [INSPIRE].ADSGoogle Scholar
  92. [92]
    E.K. Akhmedov, M. Maltoni and A.Y. Smirnov, Neutrino oscillograms of the Earth: effects of 1-2 mixing and CP-violation, JHEP 06 (2008) 072 [arXiv:0804.1466] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    J. Bernabeu, S. Palomares Ruiz and S. Petcov, Atmospheric neutrino oscillations, θ 13 and neutrino mass hierarchy, Nucl. Phys. B 669 (2003) 255 [hep-ph/0305152] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, Phys. Rev. D 83 (2011) 123001 [arXiv:1102.2688] [INSPIRE].ADSGoogle Scholar
  96. [96]
    M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • M. C. Gonzalez-Garcia
    • 1
    • 2
  • Michele Maltoni
    • 3
  • Jordi Salvado
    • 4
  • Thomas Schwetz
    • 5
  1. 1.C.N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookU.S.A.
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.Instituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13-15Universidad Autónoma de MadridMadridSpain
  4. 4.Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  5. 5.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations