Journal of High Energy Physics

, 2012:94 | Cite as

String theory versus black hole complementarity

Article

Abstract

It is argued that string theory on the Euclidean version of the Schwarzschild black hole — the cigar geometry — admits a zero mode that is localized at the tip of the cigar. The presence of this mode implies that in string theory, unlike in general relativity, the tip of the cigar is a special region. This is in tension with the Euclidean version of the black hole complementarity principle. We provide some qualitative arguments that link between this zero mode and the origin of the black hole entropy and firewall at the horizon.

Keywords

Black Holes in String Theory Tachyon Condensation 

References

  1. [1]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    N. Itzhaki, Is the black hole complementarity principle really necessary?, hep-th/9607028 [INSPIRE].
  3. [3]
    G. ’t Hooft, The scattering matrix approach for the quantum black hole: an overview, Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, arXiv:1207.3123 [INSPIRE].
  5. [5]
    D. Kutasov, Accelerating branes and the string/black hole transition, hep-th/0509170 [INSPIRE].
  6. [6]
    D. Kutasov and D. Sahakyan, Comments on the thermodynamics of little string theory, JHEP 02 (2001) 021 [hep-th/0012258] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].
  8. [8]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    L. Susskind, Complementarity and firewalls, arXiv:1207.4090.
  10. [10]
    L. Susskind, String theory and the principles of black hole complementarity, Phys. Rev. Lett. 71 (1993) 2367 [hep-th/9307168] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    L. Susskind, Strings, black holes and Lorentz contraction, Phys. Rev. D 49 (1994) 6606 [hep-th/9308139] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Physics DepartmentTel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations