Advertisement

Journal of High Energy Physics

, 2012:75 | Cite as

Potential of optimized NOνA for large θ 13 & combined performance with a LArTPC & T2K

  • Sanjib Kumar Agarwalla
  • Suprabh Prakash
  • Sushant K. Raut
  • S. Uma Sankar
Article

Abstract

NOνA experiment has reoptimized its event selection criteria in light of the recently measured moderately large value of θ 13. We study the improvement in the sensitivity to the neutrino mass hierarchy and to leptonic CP violation due to these new features. For favourable values of δ CP, NOνA sensitivity to mass hierarchy and leptonic CP violation is increased by 20%. Addition of 5 years of neutrino data from T2K to NOνA more than doubles the range of δ CP for which the leptonic CP violation can be discovered, compared to stand alone NOνA. But for unfavourable values of δ CP, the combination of NOνA and T2K are not enough to provide even a 90% C.L. hint of hierarchy discovery. Therefore, we further explore the improvement in the hierarchy and CP violation sensitivities due to the addition of a 10 kt liquid argon detector placed close to NOνA site. The capabilities of such a detector are equivalent to those of NOνA in all respects. We find that combined data from 10 kt liquid argon detector (3 years of ν + 3 years of \( \overline{\nu} \) run), NOνA (6 years of ν + 6 years of \( \overline{\nu} \) run) and T2K (5 years of ν run) can give a close to 2σ hint of hierarchy discovery for all values of δ CP. With this combined data, we can achieve CP violation discovery at 95% C.L. for roughly 60% values of δ CP.

Keywords

Neutrino Physics CP violation 

References

  1. [1]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].ADSGoogle Scholar
  3. [3]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    DAYA-BAY collaboration, D. Dwyer, Improved measurement of electron-antineutrino disappearance at Daya Bay, talk given at the Neutrino 2012 Conference, Kyoto Japan, 3–9 Jun 2012, http://neu2012.kek.jp/.
  5. [5]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    RENO collaboration, S. Kim, Observation of reactor antineutrino disappearance at Reno, talk given at the Neutrino 2012 Conference, Kyoto Japan, 3–9 Jun 2012, http://neu2012.kek.jp/.
  7. [7]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T2K collaboration, T. Nakaya, New results from T2K, talk given at the Neutrino 2012 Conference, Kyoto Japan, 3–9 Jun 2012, http://neu2012.kek.jp/.
  9. [9]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    MINOS collaboration, R. Nichol, Final minos results, talk given at the Neutrino 2012 Conference, Kyoto Japan, 3–9 Jun 2012, http://neu2012.kek.jp/.
  11. [11]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  12. [12]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  13. [13]
    DAYA-BAY collaboration, X. Qian, Improved measurement of electron-antineutrino disappearance at Daya Bay, talk given at the NuFact 2012 Conference, Williamsburg U.S.A., 23–28 Jul 2012, http://www.jlab.org/conferences/nufact12/.
  14. [14]
    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].ADSGoogle Scholar
  15. [15]
    CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].ADSGoogle Scholar
  16. [16]
    T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [INSPIRE].
  17. [17]
    NOvA collaboration, D. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study ν μν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
  18. [18]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSGoogle Scholar
  19. [19]
    P. Di Bari, An introduction to leptogenesis and neutrino properties, Contemp. Phys. 53 (2012) 315 [arXiv:1206.3168] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A.S. Joshipura, E.A. Paschos and W. Rodejohann, A simple connection between neutrino oscillation and leptogenesis, JHEP 08 (2001) 029 [hep-ph/0105175] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Endoh, S. Kaneko, S. Kang, T. Morozumi and M. Tanimoto, CP violation in neutrino oscillation and leptogenesis, Phys. Rev. Lett. 89 (2002) 231601 [hep-ph/0209020] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.C. Pati, Leptogenesis and neutrino oscillations within a predictive G(224)/SO(10) framework, Phys. Rev. D 68 (2003) 072002 [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Narayan and S.U. Sankar, Probing the matter term at long baseline experiments, Phys. Rev. D 61 (2000) 013003 [hep-ph/9904302] [INSPIRE].ADSGoogle Scholar
  25. [25]
    V. Barger, D. Marfatia and K. Whisnant, Off-axis beams and detector clusters: resolving neutrino parameter degeneracies, Phys. Rev. D 66 (2002) 053007 [hep-ph/0206038] [INSPIRE].ADSGoogle Scholar
  26. [26]
    H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Burguet-Castell, M. Gavela, J. Gomez-Cadenas, P. Hernández and O. Mena, Superbeams plus neutrino factory: the golden path to leptonic CP-violation, Nucl. Phys. B 646 (2002) 301 [hep-ph/0207080] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H. Minakata, H. Nunokawa and S.J. Parke, Parameter degeneracies in neutrino oscillation measurement of leptonic CP and T violation, Phys. Rev. D 66 (2002) 093012 [hep-ph/0208163] [INSPIRE].ADSGoogle Scholar
  29. [29]
    V. Barger, D. Marfatia and K. Whisnant, How two neutrino superbeam experiments do better than one, Phys. Lett. B 560 (2003) 75 [hep-ph/0210428] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Huber, M. Lindner and W. Winter, Synergies between the first generation JHF-SK and NuMI superbeam experiments, Nucl. Phys. B 654 (2003) 3 [hep-ph/0211300] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    O. Mena and S.J. Parke, Untangling CP-violation and the mass hierarchy in long baseline experiments, Phys. Rev. D 70 (2004) 093011 [hep-ph/0408070] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    NOvA collaboration, D. Ayres et al., The NOvA technical design report, Technical Report FERMILAB-DESIGN-2007-01 (2007) [INSPIRE].
  34. [34]
    R. Patterson, The combined sensitivity of current long-baseline experiments, talk given at the NuFact 2012 Conference, Williamsburg U.S.A., 23–28 Jul 2012, http://www.jlab.org/conferences/nufact12/.
  35. [35]
    S. Prakash, S.K. Raut and S.U. Sankar, Getting the best out of T2K and NOvA, Phys. Rev. D 86 (2012) 033012 [arXiv:1201.6485] [INSPIRE].ADSGoogle Scholar
  36. [36]
    NOvA collaboration, R. Patterson, The NOvA experiment: status and outlook, talk given at the Neutrino 2012 Conference, Kyoto Japan, 3–9 Jun 2012, http://neu2012.kek.jp/.
  37. [37]
    R. Patterson, private communication (2012).Google Scholar
  38. [38]
    A. Rubbia, Experiments for CP-violation: a giant liquid argon scintillation, Cerenkov and charge imaging experiment?, hep-ph/0402110 [INSPIRE].
  39. [39]
    A. Rubbia, Underground neutrino detectors for particle and astroparticle science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER), J. Phys. Conf. Ser. 171 (2009) 012020 [arXiv:0908.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    ICARUS collaboration, S. Amerio et al., Design, construction and tests of the ICARUS T600 detector, Nucl. Instrum. Meth. A 527 (2004) 329 [INSPIRE].ADSGoogle Scholar
  41. [41]
    S.K. Agarwalla, T. Li and A. Rubbia, An incremental approach to unravel the neutrino mass hierarchy and CP-violation with a long-baseline superbeam for large θ 13, JHEP 05 (2012) 154 [arXiv:1109.6526] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Diwan et al., Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP-violating effects, Phys. Rev. D 68 (2003) 012002 [hep-ph/0303081] [INSPIRE].ADSGoogle Scholar
  43. [43]
    V. Barger et al., Report of the US long baseline neutrino experiment study, arXiv:0705.4396 [INSPIRE].
  44. [44]
    LBNE collaboration, T. Akiri et al., The 2010 interim report of the Long-Baseline Neutrino Experiment collaboration physics working groups, arXiv:1110.6249 [INSPIRE].
  45. [45]
    LBNE Collaboration, J. Strait, LBNE, talk given at the NuFact 2012 Conference, Williamsburg U.S.A., 23–28 Jul 2012, http://www.jlab.org/conferences/nufact12/.
  46. [46]
    G. Zeller, private communication (2012).Google Scholar
  47. [47]
    R. Petti and G. Zeller, Nuclear effects in water vs. argon, Technical Report LBNE No. 740.Google Scholar
  48. [48]
    M. Fechner, Détermination des performances attendues sur la recherche de loscillation ν μν e dans lexpérience T2K depuis létude des données recueillies dans lexpérience K2K, Thesis DAPNIA-2006-01-T (2006).
  49. [49]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    MINOS collaboration, D. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].ADSGoogle Scholar
  53. [53]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].ADSGoogle Scholar
  54. [54]
    NOvA collaboration, ν μ + \( {{\overline{\nu}}_{\mu }} \) quasielastic CC events, http://www-nova.fnal.gov/plots_and_figures/3_Theta23_DeltaMsqr23/240-spectra_3years_CPTViolation.pdf.
  55. [55]
    J. Thomas, Glade: an opportunity for lar exploitaton in the NuMI beam, talk given at the LAGUNA-LBNO General Meeting, Paris France, 12–14 Mar 2012.Google Scholar
  56. [56]
    K. Dick, M. Freund, M. Lindner and A. Romanino, CP violation in neutrino oscillations, Nucl. Phys. B 562 (1999) 29 [hep-ph/9903308] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Donini, M. Gavela, P. Hernández and S. Rigolin, Neutrino mixing and CP-violation, Nucl. Phys. B 574 (2000) 23 [hep-ph/9909254] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Sanjib Kumar Agarwalla
    • 1
  • Suprabh Prakash
    • 2
  • Sushant K. Raut
    • 2
    • 3
  • S. Uma Sankar
    • 2
    • 4
  1. 1.Instituto de Física CorpuscularCSIC-Universitat de ValènciaValenciaSpain
  2. 2.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia
  3. 3.Physical Research LaboratoryAhmedabadIndia
  4. 4.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations