Advertisement

Journal of High Energy Physics

, 2012:53 | Cite as

Predictions from heavy new physics interpretation of the top forward-backward asymmetry

  • Cédric Delaunay
  • Oram Gedalia
  • Yonit Hochberg
  • Yotam Soreq
Open Access
Article

Abstract

We derive generic predictions at hadron colliders from the large forward- backward asymmetry observed at the Tevatron, assuming the latter arises from heavy new physics beyond the Standard Model. We use an effective field theory approach to characterize the associated unknown dynamics. By fitting the Tevatron \( t\overline{t} \) data we derive constraints on the form of the new physics. Furthermore, we show that heavy new physics explaining the Tevatron data generically enhances at high invariant masses both the top pair production cross section and the charge asymmetry at the LHC. This enhancement can be within the sensitivity of the 8TeV run, such that the 2012 LHC data should be able to exclude a large class of models of heavy new physics or provide hints for its presence. The same new physics implies a contribution to the forward-backward asymmetry in bottom pair production at low invariant masses of order a permil at most.

Keywords

Phenomenological Models Hadronic Colliders 

References

  1. [1]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CDF collaboration, Measurement of the forward backward asymmetry in top pair production in the dilepton decay channel using 5.1 fb −1, CDF note 10436, Fermilab, Batavia U.S.A. March 10 2011.Google Scholar
  3. [3]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CDF collaboration, Study of the top quark production asymmetry and its mass and rapidity dependence in the full run II Tevatron dataset, CDF note 10807, Fermilab, Batavia U.S.A. March 7 2012.Google Scholar
  5. [5]
    J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.J. Brodsky and X.-G. Wu, Application of the principle of maximum conformality to the top-quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 85 (2012) 114040 [arXiv:1205.1232] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, Inclusive and differential measurements of the \( t\overline{t} \) charge asymmetry in proton-proton collisions at 7 TeV, Phys. Lett. B 717 (2012) 129 [arXiv:1207.0065] [INSPIRE].ADSGoogle Scholar
  8. [8]
    ATLAS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt{s}=7\,TeV \) using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2039 [arXiv:1203.4211] [INSPIRE].ADSGoogle Scholar
  9. [9]
    ATLAS collaboration, Measurement of the charge asymmetry in dileptonic decay of top quark pairs in pp collisions at \( \sqrt{s}=7\,TeV \) using the ATLAS detector, ATLAS-CONF-2012-057, CERN, Geneva Switzerland June 2 2012.Google Scholar
  10. [10]
    CMS collaboration, Measurement of top quark pair differential cross sections at \( \sqrt{s}=7\,TeV \), CMS-PAS-TOP-11-013, CERN, Geneva Switzerland February 8 2012.Google Scholar
  11. [11]
    D.-W. Jung, P. Ko, J.S. Lee and S.-H. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010)238 [arXiv:0912.1105] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 arXiv:1010.6304] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, Phys. Lett. B 701 (2011) 248 [arXiv:1011.5976] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Blum et al., Implications of the CDF \( t\overline{t} \) forward-backward asymmetry for boosted top physics, Phys. Lett. B 702 (2011) 364 [arXiv:1102.3133] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez and Y. Soreq, Implications of the CDF \( t\overline{t} \) forward-backward asymmetry for hard top physics, JHEP 08 (2011) 031 [arXiv:1103.2297] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron \( t\overline{t} \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.F. Kamenik, J. Shu and J. Zupan, Review of new physics effects in \( t\overline{t} \) production, Eur. Phys. J. C 72 (2012) 2102 [arXiv:1107.5257] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Barbieri and A. Strumia, TheLEP paradox’, hep-ph/0007265 [INSPIRE].
  19. [19]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Drobnak, J.F. Kamenik and J. Zupan, Flipping \( t\overline{t} \) asymmetries at the Tevatron and the LHC, Phys. Rev. D 86 (2012) 054022 [arXiv:1205.4721] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D0 collaboration, V.M. Abazov et al., Measurement of the \( t\overline{t} \) production cross section using dilepton events in \( p\overline{p} \) collisions, Phys. Lett. B 704 (2011) 403 [arXiv:1105.5384] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P. Baernreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    CDF collaboration, T. Aaltonen et al., First measurement of the \( t\overline{t} \) differential cross section dσ/dM (\( t\overline{t} \)) in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96\,\,TeV \), Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in \( t\overline{t} \) production from flavour symmetries, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    CMS collaboration, Search for anomalous \( t\overline{t} \) production in the highly-boosted all-hadronic final state, JHEP 09 (2012) 029 [arXiv:1204.2488] [INSPIRE].ADSGoogle Scholar
  30. [30]
    CMS collaboration, Search for quark compositeness in dijet angular distributions from pp collisions at \( \sqrt{s}=7\,TeV \), JHEP 05 (2012) 055 [arXiv:1202.5535] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    ATLAS collaboration, Search for new physics in dijet mass and angular distributions using 4.8 fb −1 of pp collisions at \( \sqrt{s}=7\,TeV \) collected by the ATLAS detector, ATLAS-CONF-2012-038, CERN, Geneva Switzerland March 14 2012.Google Scholar
  32. [32]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Bartos, \( b\overline{b} \) asymmetry at CDF, CDF talk at the CERN AFB workshop, April 2012.Google Scholar
  34. [34]
    CDF collaboration, T. Aaltonen et al., Study of substructure of high transverse momentum jets produced in proton-antiproton collisions at \( \sqrt{s}=1.96\,\,TeV \), Phys. Rev. D 85 (2012) 091101 [arXiv:1106.5952] [INSPIRE].ADSGoogle Scholar
  35. [35]
    ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s}=7\,TeV \) pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].ADSGoogle Scholar
  36. [36]
    ATLAS collaboration, Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at \( \sqrt{s}=7\,TeV \), arXiv:1206.2135 [INSPIRE].

Copyright information

© SISSA 2012

Authors and Affiliations

  • Cédric Delaunay
    • 1
  • Oram Gedalia
    • 2
  • Yonit Hochberg
    • 2
  • Yotam Soreq
    • 2
  1. 1.Theory Division, Physics Department, CERNGeneva 23Switzerland
  2. 2.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations