Advertisement

Journal of High Energy Physics

, 2012:40 | Cite as

The hunt for New Physics in the Flavour Sector with up vector-like quarks

  • F. J. Botella
  • G. C. Branco
  • M. NebotEmail author
Article

Abstract

We analyse the possible presence of New Physics (NP) in the Flavour Sector and evaluate its potential for solving the tension between the experimental values of \( {A_{{J/\varPsi {K_S}}}} \) and \( \mathrm{Br}\left( {{B^{+}}\to {\tau^{+}}{\nu_{\tau }}} \right) \) with respect to the Standard Model (SM) expectations. Updated model independent analyses, where NP contributions are allowed in \( B_d^0-\bar{B}_d^0 \) and \( B_s^0-\bar{B}_s^0 \) transitions, suggest the need of New Physics in the bd sector. A detailed analysis of recent Flavour data is then presented in the framework of a simple extension of the SM, where a Q = 2/3 vector-like isosinglet quark is added to the spectrum of the SM. Special emphasis is given to the implications of this model for correlations among various measurable quantities. We include constraints from all the relevant quark flavour sectors and give precise predictions for selected rare processes. We find important deviations from the SM in observables in the bd sector like the semileptonic asymmetry \( A_{SL}^d \), \( B_d^0\to {\mu^{+}}{\mu^{-}} \) and \( A_{SL}^s-A_{SL}^d \). Other potential places where NP can show up include A J/ΨΦ, γ, \( K_L^0\to {\pi^0}v\bar{v} \), tZq and D 0μ + μ among others. The experimental data favours in this model the existence of an up vector-like quark with a mass below 600(1000) GeV at 1(2) σ.

Keywords

Beyond Standard Model Rare Decays CP violation 

References

  1. [1]
    A.J. Buras, Flavour Visions, PoS(BEAUTY2011)008 [arXiv:1106.0998] [INSPIRE].
  2. [2]
    N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    BABAR collaboration, B. Aubert et al., Measurement of Time-Dependent CP Asymmetry in \( {B^0}\to c\bar{c}{K^{{\left( * \right)}}}^0 \) Decays, Phys. Rev. D 79 (2009) 072009 [arXiv:0902.1708] [INSPIRE].ADSGoogle Scholar
  5. [5]
    I. Adachi et al., Precise measurement of the CP-violation parameter sin 2ϕ 1 in \( {B^0}\to \left( {c\bar{c}} \right){K^0} \) decays, Phys. Rev. Lett. 108 (2012) 171802 [arXiv:1201.4643] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Belle collaboration, K. Ikado et al., Evidence of the Purely Leptonic Decay B → τ antinu(tau), Phys. Rev. Lett. 97 (2006) 251802 [hep-ex/0604018] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Belle collaboration, K. Hara et al., Evidence for \( {B^{-}}->{\tau^{-}}\bar{\nu} \) with a Semileptonic Tagging Method, Phys. Rev. D 82 (2010) 071101 [arXiv:1006.4201] [INSPIRE].ADSGoogle Scholar
  8. [8]
    BABAR collaboration, B. Aubert et al., A Search for B + → τ +ν with Hadronic B tags, Phys. Rev. D 77 (2008) 011107 [arXiv:0708.2260] [INSPIRE].ADSGoogle Scholar
  9. [9]
    BABAR collaboration, J. Lees et al., Evidence of B → τ ν decays with hadronic B tags, arXiv:1207.0698 [INSPIRE].
  10. [10]
    Belle collaboration, I. Adachi et al., Measurement of \( {B^{-}}->{\tau^{-}}{{\bar{\nu}}_{\tau }} \) with a Hadronic Tagging Method Using the Full Data Sample of Belle, arXiv:1208.4678 [INSPIRE].
  11. [11]
    F. Botella, G. Branco, M. Nebot and M. Rebelo, New physics and evidence for a complex CKM, Nucl. Phys. B 725 (2005) 155 [hep-ph/0502133] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F.J. Botella, G.C. Branco and M. Nebot, CP violation and limits on New Physics including recent B s measurements, Nucl. Phys. B 768 (2007) 1 [hep-ph/0608100] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.C. Branco, L. Lavoura and J.P. Silva, CP Violation, vol. 103, (1999).Google Scholar
  14. [14]
    M. Gronau and D. London, How to determine all the angles of the unitarity triangle from \( B_d^0\to D{K_S} \) and \( B_s^0\to {D^0} \), Phys. Lett. B 253 (1991) 483 [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Gronau and D. Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B 265 (1991) 172 [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Aleksan, I. Dunietz and B. Kayser, Determining the CP-violating phase gamma, Z. Phys. C 54 (1992) 653 [INSPIRE].ADSGoogle Scholar
  17. [17]
    D. Atwood, I. Dunietz and A. Soni, Enhanced CP-violation with BKD 0 (anti-D 0 ) modes and extraction of the CKM angle gamma, Phys. Rev. Lett. 78 (1997) 3257 [hep-ph/9612433] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Atwood, I. Dunietz and A. Soni, Improved methods for observing CP-violation in B ±KD and measuring the CKM phase gamma, Phys. Rev. D 63 (2001) 036005 [hep-ph/0008090] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Giri, Y. Grossman, A. Soffer and J. Zupan, Determining gamma using B ±DK ± with multibody D decays, Phys. Rev. D 68 (2003) 054018 [hep-ph/0303187] [INSPIRE].ADSGoogle Scholar
  20. [20]
    BaBar collaboration, B. Aubert et al., Measurement of CP-violation Parameters with a Dalitz Plot Analysis of B ±D+ππ0)K ±, Phys. Rev. Lett. 99 (2007) 251801 [hep-ex/0703037] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Belle collaboration, A. Poluektov et al., Evidence for direct CP-violation in the decay BD (∗) K, DK Sπ+π and measurement of the CKM phase ϕ 3,Phys. Rev. D 81 (2010)112002 [arXiv:1003.3360] [INSPIRE].ADSGoogle Scholar
  22. [22]
    F. Botella, G. Branco, M. Nebot and M. Rebelo, Unitarity triangles and the search for new physics, Nucl. Phys. B 651 (2003) 174 [hep-ph/0206133] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Z. Ligeti, M. Papucci and G. Perez, Implications of the measurement of the \( B_s^0-B_s^0 \) mass difference, Phys. Rev. Lett. 97 (2006) 101801 [hep-ph/0604112] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Ball and R. Fleischer, Probing new physics through B mixing: Status, benchmarks and prospects, Eur. Phys. J. C 48 (2006) 413 [hep-ph/0604249] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y. Grossman, Y. Nir and G. Raz, Constraining the phase of B sB s mixing, Phys. Rev. Lett. 97 (2006) 151801 [hep-ph/0605028] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    UTfit collaboration, M. Bona et al., Constraints on new physics from the quark mixing unitarity triangle, Phys. Rev. Lett. 97 (2006) 151803 [hep-ph/0605213] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    LHCb collaboration, R. Aaij et al., Measurement of the CP-violating phase ϕ s in the decay \( B_s^0\to J/\psi \phi \), Phys. Rev. Lett. 108 (2012) 101803 [arXiv:1112.3183] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    LHCb collaboration, R. Aaij et al., Measurement of the CP-violating phase ϕ s in \( \bar{B}_s^0->J/\psi {f_0}\left( {980} \right) \), Phys. Lett. B 707 (2012) 497 [arXiv:1112.3056][INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Langacker and D. London, Mixing Between Ordinary and Exotic Fermions, Phys. Rev. D 38 (1988) 886 [INSPIRE].ADSGoogle Scholar
  30. [30]
    F. del Aguila and M.J. Bowick, The possibility of new fermions with Delta I = 0 mass, Nucl. Phys. B 224 (1983) 107 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. del Aguila, E. Laermann and P.M. Zerwas, Exotic E 6 particles in e + e annihilation, Nucl. Phys. B 297 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Cheng and L.-F. Li, Suppression of flavor changing neutral current effects due to mixings with a heavy singlet fermion, Phys. Rev. D 45 (1992) 1708 [INSPIRE].ADSGoogle Scholar
  33. [33]
    F. del Aguila and J. Cortes, A new model of weak CP-violation, Phys. Lett. B 156 (1985) 243 [INSPIRE].ADSGoogle Scholar
  34. [34]
    F. del Aguila, M. Chase and J. Cortes, Vector like fermion contributions to epsilon-prime, Nucl. Phys. B 271 (1986) 61 [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Branco and L. Lavoura, On the addition of vector like quarks to the standard model, Nucl. Phys. B 278 (1986) 738 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    W. Buchmüller and M. Gronau, Flavor changing Z0 decays, Phys. Lett. B 220 (1989) 641 [INSPIRE].ADSGoogle Scholar
  37. [37]
    Y. Nir and D.J. Silverman, Z mediated flavor changing neutral currents and their implications for CP asymmetries in B0 decays, Phys. Rev. D 42 (1990) 1477 [INSPIRE].ADSGoogle Scholar
  38. [38]
    E. Nardi, E. Roulet and D. Tommasini, Global analysis of fermion mixing with exotics, Nucl. Phys. B 386 (1992) 239 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Silverman, Z mediated \( B-\bar{B}mixing \) and B meson CP-violating asymmetries in the light of new FCNC bounds, Phys. Rev. D 45 (1992) 1800 [INSPIRE].ADSGoogle Scholar
  40. [40]
    G. Branco, P. Parada, T. Morozumi and M. Rebelo, Effect of flavor changing neutral currents in the leptonic asymmetry in B(d) decays, Phys. Lett. B 306 (1993) 398 [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Branco, T. Morozumi, P. Parada and M. Rebelo, CP asymmetries in B0 decays in the presence of flavor changing neutral currents, Phys. Rev. D 48 (1993) 1167 [INSPIRE].ADSGoogle Scholar
  42. [42]
    G. Branco, P. Parada and M. Rebelo, \( {D^0}-{{\bar{D}}^0} \) mixing in the presence of isosinglet quarks, Phys. Rev. D 52 (1995) 4217 [hep-ph/9501347] [INSPIRE].ADSGoogle Scholar
  43. [43]
    V.D. Barger, M. Berger and R. Phillips, Quark singlets: Implications and constraints, Phys. Rev. D 52 (1995) 1663 [hep-ph/9503204] [INSPIRE].ADSGoogle Scholar
  44. [44]
    F. del Aguila, J. Aguilar-Saavedra and G. Branco, CP violation from new quarks in the chiral limit, Nucl. Phys. B 510 (1998) 39 [hep-ph/9703410] [INSPIRE].ADSGoogle Scholar
  45. [45]
    G. Barenboim and F. Botella, Delta F = 2 effective Lagrangian in theories with vector - like fermions, Phys. Lett. B 433 (1998) 385 [hep-ph/9708209] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G. Barenboim, F. Botella, G. Branco and O. Vives, How sensitive to FCNC can B0 CP asymmetries be?, Phys. Lett. B 422 (1998) 277 [hep-ph/9709369] [INSPIRE].ADSGoogle Scholar
  47. [47]
    I. Kakebe and K. Yamamoto, Flavor nonconservation and CP-violation from quark mixings with singlet quarks, Phys. Lett. B 416 (1998) 184 [hep-ph/9705203] [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Barenboim, F. Botella and O. Vives, Tree level FCNC in the B system: From CP asymmetries to rare decays, Phys. Rev. D 64 (2001) 015007 [hep-ph/0012197] [INSPIRE].ADSGoogle Scholar
  49. [49]
    K. Higuchi and K. Yamamoto, Quark mixings and flavor changing interactions with singlet quarks, Phys. Rev. D 62 (2000) 073005 [hep-ph/0004065] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G. Barenboim, F. Botella and O. Vives, Constraining models with vector - like fermions from FCNC in K and B physics, Nucl. Phys. B 613 (2001) 285 [hep-ph/0105306] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Aguilar-Saavedra, Effects of mixing with quark singlets, Phys. Rev. D 67 (2003) 035003 [Erratum ibid. D 69 (2004) 099901] [hep-ph/0210112] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Aguilar-Saavedra, F. Botella, G. Branco and M. Nebot, The Size of \( \chi =arg\left( {-V\left( {ts} \right)V*\left( {tb} \right)V*\left( {cs} \right)V\left( {cb} \right)} \right) \) and physics beyond the standard model,Nucl. Phys. B 706 (2005) 204 [hep-ph/0406151] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    F.J. Botella, G.C. Branco and M. Nebot, Small violations of unitarity, the phase in \( B_s^0-\bar{B}_s^O \) and visible tcZ decays at the LHC, Phys. Rev. D 79 (2009) 096009 [arXiv:0805.3995] [INSPIRE].ADSGoogle Scholar
  54. [54]
    K. Higuchi and K. Yamamoto, Flavor-changing interactions with singlet quarks and their implications for the LHC, Phys. Rev. D 81 (2010) 015009 [arXiv:0911.1175] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P.H. Frampton, P. Hung and M. Sher, Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263 [hep-ph/9903387] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].ADSGoogle Scholar
  57. [57]
    F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    H. Georgi, S. Glashow, M. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    P. Gonzalez, J. Rohrwild and M. Wiebusch, Electroweak Precision Observables within a Fourth Generation Model with General Flavour Structure, Eur. Phys. J. C 72 (2012) 2007 [arXiv:1105.3434] [INSPIRE].ADSGoogle Scholar
  60. [60]
    G. Passarino, C. Sturm and S. Uccirati, Complete Electroweak Corrections to Higgs production in a Standard Model with four generations at the LHC, Phys. Lett. B 706 (2011) 195 [arXiv:1108.2025] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, Phys. Lett. B 715 (2012)310 [arXiv:1204.1252] [INSPIRE].ADSGoogle Scholar
  62. [62]
    O. Eberhardt, A. Lenz, A. Menzel, U. Nierste and M. Wiebusch, Status of the fourth fermion generation before ICHEP2012: Higgs data and electroweak precision observables, Phys. Rev. D 86 (2012) 074014 [arXiv:1207.0438] [INSPIRE].ADSGoogle Scholar
  63. [63]
    UTfit collaboration, M. Bona et al., An improved standard model prediction of BR(B → τ ν) and its implications for new physics, Phys. Lett. B 687 (2010) 61 [arXiv:0908.3470] [INSPIRE].ADSGoogle Scholar
  64. [64]
    E. Lunghi and A. Soni, Possible evidence for the breakdown of the CKM-paradigm of CP-violation, Phys. Lett. B 697 (2011) 323 [arXiv:1010.6069] [INSPIRE].ADSGoogle Scholar
  65. [65]
    T. Inami and C. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K_L}\to \mu \bar{\mu} \), \( {K^{+}}\to {\pi^{+}}\nu \bar{\nu} \) and \( {K^0}\leftrightarrow {{\bar{K}}^0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Next-to-leading order QCD corrections to the lifetime difference of B(s) mesons, Phys. Lett. B 459 (1999) 631 [hep-ph/9808385] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Beneke, G. Buchalla, A. Lenz and U. Nierste, CP asymmetry in flavor specific B decays beyond leading logarithms, Phys. Lett. B 576 (2003) 173 [hep-ph/0307344] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Ciuchini, E. Franco, V. Lubicz, F. Mescia and C. Tarantino, Lifetime differences and CP-violation parameters of neutral B mesons at the next-to-leading order in QCD, JHEP 08 (2003) 031 [hep-ph/0308029] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Lenz and U. Nierste, Theoretical update of \( {B_s}-{{\bar{B}}_s} \) mixing, JHEP 06 (2007) 072 [hep-ph/0612167] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Lenz, Theoretical update of B-Mixing and Lifetimes, arXiv:1205.1444 [INSPIRE].
  71. [71]
    D0 collaboration, V.M. Abazov et al., Measurement of the anomalous like-sign dimuon charge asymmetry with 9 f b 1 of \( p\bar{p} \) collisions, Phys. Rev. D 84 (2011) 052007 [arXiv:1106.6308] [INSPIRE].ADSGoogle Scholar
  72. [72]
    LHCb collaboration, R. Aaij et al., Search for the rare decays \( B_s^0\to {\mu^{+}}{\mu^{-}} \) and B 0μ + μ , Phys. Lett. B 708 (2012) 55 [arXiv:1112.1600] [INSPIRE].ADSGoogle Scholar
  73. [73]
    LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    CMS collaboration, S. Chatrchyan et al., Search for B s and B to dimuon decays in pp collisions at 7 TeV, Phys. Rev. Lett. 107 (2011) 191802 [arXiv:1107.5834] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    CMS collaboration, S. Chatrchyan et al., Search for \( B_s^0to{\mu^{+}}{\mu^{-}} \) and B 0 toμ + μ decays, JHEP 04 (2012) 033 [arXiv:1203.3976] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    ATLAS collaboration, G. Aad et al., Search for the decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \) with the ATLAS detector, Phys. Lett. B 713 (2012) 387 [arXiv:1204.0735] [INSPIRE].ADSGoogle Scholar
  77. [77]
    D0 collaboration, V.M. Abazov et al., Measurement of the CP-violating phase \( \phi {{_s^J}^{{/\psi}}}^{\phi } \) using the flavor-tagged decay \( B_s^0\to J/\psi \phi \) in 8 fb −1 of \( p\bar{p} \) collisions, Phys. Rev. D 85 (2012) 032006 [arXiv:1109.3166] [INSPIRE].ADSGoogle Scholar
  78. [78]
    CDF collaboration, T. Aaltonen et al., Measurement of the CP-Violating Phase \( \beta {{_s^{J/}}^{\varPsi}}^{\phi } \) in \( B_s^0\to J/\varPsi \phi \) Decays with the CDF II Detector, Phys. Rev. D 85 (2012) 072002 [arXiv:1112.1726] [INSPIRE].ADSGoogle Scholar
  79. [79]
    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    Y. Grossman and Y. Nir, \( {K_L}\to {\pi^0}\nu \bar{\nu} \) beyond the standard model, Phys. Lett. B 398 (1997) 163 [hep-ph/9701313] [INSPIRE].ADSGoogle Scholar
  81. [81]
    E. Golowich, S. Pakvasa and A.A. Petrov, New Physics contributions to the lifetime difference in \( {D^0}-{{\bar{D}}^0} \) mixing, Phys. Rev. Lett. 98 (2007) 181801 [hep-ph/0610039] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    E. Golowich, J. Hewett, S. Pakvasa and A.A. Petrov, Relating \( {D^0}-{{\bar{D}}^0} \) Mixing and D 0 → ℓ+ with New Physics, Phys. Rev. D 79 (2009) 114030 [arXiv:0903.2830] [INSPIRE].ADSGoogle Scholar
  83. [83]
    BaBar collaboration, B. Aubert et al., Search for CP-violation in the decays D 0K K + and D 0 → ππ+, Phys. Rev. Lett. 100 (2008) 061803 [arXiv:0709.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    Belle collaboration, M. Staric et al., Measurement of CP asymmetry in Cabibbo suppressed D 0 decays, Phys. Lett. B 670 (2008) 190 [arXiv:0807.0148] [INSPIRE].ADSGoogle Scholar
  85. [85]
    CDF collaboration, T. Aaltonen et al., Measurement of CP-violating asymmetries in D 0 → π+π and D 0K + K decays at CDF, Phys. Rev. D 85 (2012) 012009 [arXiv:1111.5023] [INSPIRE].ADSGoogle Scholar
  86. [86]
    LHCb collaboration, R. Aaij et al., Evidence for CP-violation in time-integrated D 0h h + decay rates, Phys. Rev. Lett. 108 (2012) 111602 [arXiv:1112.0938] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    C. Delaunay, J.F. Kamenik, G. Perez and L. Randall, Charming CP-violation and Dipole Operators from RS Flavor Anarchy, arXiv:1207.0474 [INSPIRE].
  88. [88]
    D0 collaboration, V.M. Abazov et al., Search for single vector-like quarks in \( p\bar{p} \) collisions at \( \sqrt{s}=1.96\;TeV \), Phys. Rev. Lett. 106 (2011) 081801 [arXiv:1010.1466][INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    CMS collaboration, S. Chatrchyan et al., Search for a Vector-like Quark with Charge 2/3 in t + Z Events from pp Collisions at \( \sqrt{s}=7\;TeV \), Phys. Rev. Lett. 107(2011)271802 [arXiv:1109.4985] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    ATLAS collaboration, G. Aad et al., Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at \( \sqrt{s}=7\;TeV \) with the ATLAS detector, Phys. Lett. B 712 (2012)22 [arXiv:1112.5755] [INSPIRE].ADSGoogle Scholar
  91. [91]
    I. Antoniadis, K. Benakli and M. Quirós, Production of Kaluza-Klein states at future colliders, Phys. Lett. B 331 (1994) 313 [hep-ph/9403290] [INSPIRE].ADSGoogle Scholar
  92. [92]
    A. Pomarol and M. Quirós, The Standard model from extra dimensions, Phys. Lett. B 438 (1998) 255 [hep-ph/9806263] [INSPIRE].ADSGoogle Scholar
  93. [93]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Effective description of quark mixing, Phys. Lett. B 492 (2000) 98 [hep-ph/0007160] [INSPIRE].ADSGoogle Scholar
  94. [94]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].CrossRefGoogle Scholar
  95. [95]
    K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC Processes in the Littlest Higgs Model with T-Parity: a 2009 Look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [INSPIRE].Google Scholar
  99. [99]
    A.J. Buras, B. Duling and S. Gori, The Impact of Kaluza-Klein Fermions on Standard Model Fermion Couplings in a RS Model with Custodial Protection, JHEP 09 (2009) 076 [arXiv:0905.2318] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    I.I. Bigi, M. Blanke, A.J. Buras and S. Recksiegel, CP Violation in \( {D^0}-{{\bar{D}}^0} \) Oscillations: General Considerations and Applications to the Littlest Higgs Model with T-Parity, JHEP 07 (2009) 097 [arXiv:0904.1545] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  102. [102]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  103. [103]
    M. Artuso, D. Asner, P. Ball, E. Baracchini, G. Bell, et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833] [INSPIRE].ADSGoogle Scholar
  104. [104]
    M. Antonelli et al., Flavor Physics in the Quark Sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    KTeV collaboration, A. Alavi-Harati et al., Observation of direct CP-violation in K(S, L) → ππ decays, Phys. Rev. Lett. 83 (1999) 22 [hep-ex/9905060] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    E871 collaboration, D. Ambrose et al., Improved branching ratio measurement for the decay K Lμ + μ , Phys. Rev. Lett. 84 (2000) 1389 [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    E391a collaboration, J. Ahn et al., Search for the Decay \( {K_L}\to {\pi^0}\nu \bar{\nu} \), Phys. Rev. Lett. 100 (2008) 201802 [arXiv:0712.4164] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    E949 collaboration, A. Artamonov et al., New measurement of the \( {K^{+}}\to {\pi^{+}}\nu \bar{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    KTeV collaboration, E. Abouzaid et al., Precise Measurements of Direct CP-violation, CPT Symmetry and Other Parameters in the Neutral Kaon System, Phys. Rev. D 83 (2011)092001 [arXiv:1011.0127] [INSPIRE].ADSGoogle Scholar
  110. [110]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992)381 [INSPIRE].
  111. [111]
    H. Flacher et al., Revisiting the Global Electroweak Fit of the Standard Model and Beyond with Gfitter, Eur. Phys. J. C 60 (2009) 543 [Erratum ibid. C 71 (2011) 1718] [arXiv:0811.0009] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    ETM collaboration, P. Dimopoulos et al., Lattice QCD determination of m b , f B and f Bs with twisted mass Wilson fermions, JHEP 01 (2012) 046 [arXiv:1107.1441] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    Fermilab Lattice and MILC Collaborations collaboration, A. Bazavov et al., B- and D-meson decay constants from three-flavor lattice QCD, Phys. Rev. D 85 (2012) 114506 [arXiv:1112.3051] [INSPIRE].ADSGoogle Scholar
  115. [115]
    C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, High-Precision \( {f_{{{B_s}}}} \) and HQET from Relativistic Lattice QCD, Phys. Rev. D 85 (2012) 031503 [arXiv:1110.4510] [INSPIRE].ADSGoogle Scholar
  116. [116]
    H. Na et al., The B and B s Meson Decay Constants from Lattice QCD, Phys. Rev. D 86 (2012) 034506 [arXiv:1202.4914] [INSPIRE].ADSGoogle Scholar
  117. [117]
    F. Botella and L.-L. Chau, Anticipating the Higher Generations of Quarks from Rephasing Invariance of the Mixing Matrix, Phys. Lett. B 168 (1986) 97 [INSPIRE].ADSGoogle Scholar
  118. [118]
    L.-L. Chau and W.-Y. Keung, Comments on the Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett. 53 (1984) 1802 [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    L. Lavoura and J.P. Silva, The Oblique corrections from vector - like singlet and doublet quarks, Phys. Rev. D 47 (1993) 2046 [INSPIRE].ADSGoogle Scholar
  120. [120]
    C.-H.V. Chang, D. Chang and W.-Y. Keung, Vector quark model and BX sγ decay, Phys. Rev. D 61 (2000) 053007 [INSPIRE].ADSGoogle Scholar
  121. [121]
    M. Aoki, E. Asakawa, M. Nagashima, N. Oshimo and A. Sugamoto, Contributions of vector like quarks to radiative B meson decay, Phys. Lett. B 487 (2000) 321 [hep-ph/0005133] [INSPIRE].ADSGoogle Scholar
  122. [122]
    F. Botella, G. Branco, M. Nebot, and A. Sanchez, work in preparation.Google Scholar
  123. [123]
    E. Nardi, Top - charm flavor changing contributions to the effective bsZ vertex, Phys. Lett. B 365 (1996) 327 [hep-ph/9509233] [INSPIRE].ADSGoogle Scholar
  124. [124]
    M. Vysotsky, New (virtual) physics in the era of the LHC, Phys. Lett. B 644 (2007) 352 [hep-ph/0610368] [INSPIRE].ADSGoogle Scholar
  125. [125]
    P. Kopnin and M. Vysotsky, Manifestation of a singlet heavy up-type quark in the branching ratios of rare decays \( K\to \pi \nu \bar{\nu} \) , \( B\to \pi \nu \bar{\nu} \) and \( B\to K\nu \bar{\nu} \), JETP Lett. 87 (2008) 517 [arXiv:0804.0912] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    I. Picek and B. Radovcic, Nondecoupling of terascale isosinglet quark and rare K- and B-decays, Phys. Rev. D 78 (2008) 015014 [arXiv:0804.2216] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Departament de Física Teòrica and IFICUniversitat de València - CSICBurjassotSpain
  2. 2.Departamento de Física and Centro de Física Teórica de PartículasInstituto Superior Técnico, Universidade Técnica de LisboaLisboaPortugal

Personalised recommendations