Remarks on effective action and entanglement entropy of Maxwell field in generic gauge

Abstract

We analyze the dependence of the effective action and the entanglement entropy in the Maxwell theory on the gauge fixing parameter a in d dimensions. For a generic value of a the corresponding vector operator is nonminimal. The operator can be diagonalized in terms of the transverse and longitudinal modes. Using this factorization we obtain an expression for the heat kernel coefficients of the nonminimal operator in terms of the coefficients of two minimal Beltrami-Laplace operators acting on 0- and 1-forms. This expression agrees with an earlier result by Gilkey et al. Working in a regularization scheme with the dimensionful UV regulators we introduce three different regulators: for transverse, longitudinal and ghost modes, respectively. We then show that the effective action and the entanglement entropy do not depend on the gauge fixing parameter a provided the certain (a-dependent) relations are imposed on the regulators. Comparing the entanglement entropy with the black hole entropy expressed in terms of the induced Newton’s constant we conclude that their difference, the so-called Kabat’s contact term, does not depend on the gauge fixing parameter a. We consider this as an indication of gauge invariance of the contact term.

References

  1. 1.

    A. Barvinsky and G. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  2. 2.

    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  3. 3.

    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  Google Scholar 

  4. 4.

    S.N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8 [arXiv:1104.3712] [INSPIRE].

    Google Scholar 

  5. 5.

    T. Jacobson, Gravitation and vacuum entanglement entropy, Int. J. Mod. Phys. D 21 (2012) 1242006 [arXiv:1204.6349] [INSPIRE].

    ADS  Google Scholar 

  6. 6.

    L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. 7.

    D.V. Fursaev and S.N. Solodukhin, On one loop renormalization of black hole entropy, Phys. Lett. B 365 (1996) 51 [hep-th/9412020] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. 8.

    D. Nesterov and S.N. Solodukhin, Gravitational effective action and entanglement entropy in UV modified theories with and without Lorentz symmetry, Nucl. Phys. B 842 (2011) 141 [arXiv:1007.1246] [INSPIRE].

    ADS  Article  Google Scholar 

  9. 9.

    T. Jacobson, Black hole entropy and induced gravity, gr-qc/9404039 [INSPIRE].

  10. 10.

    V.P. Frolov and D. Fursaev, Mechanism of generation of black hole entropy in Sakharovs induced gravity, Phys. Rev. D 56 (1997) 2212 [hep-th/9703178] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. 11.

    A. Barvinsky, private communication.

  12. 12.

    D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys. B 453 (1995) 281 [hep-th/9503016] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  13. 13.

    A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions, arXiv:1205.0971 [INSPIRE].

  14. 14.

    S. Bhattacharyya, B. Panda and A. Sen, Heat kernel expansion and extremal Kerr-Newmann black hole entropy in Einstein-Maxwell theory, JHEP 08 (2012) 084 [arXiv:1204.4061] [INSPIRE].

    ADS  Article  Google Scholar 

  15. 15.

    A. Sen, Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  16. 16.

    A. Sen, Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates, arXiv:1108.3842 [INSPIRE].

  17. 17.

    P.P. Gilkey, T.P. Branson and S.A. Fulling, Heat equation asymptotics ofnonminimaloperators on differential forms, J. Math. Phys. 32 (1991) 2089.

    ADS  MATH  Article  MathSciNet  Google Scholar 

  18. 18.

    R. Endo, Gauge dependence of the gravitational conformal anomaly for the electromagnetic field, Prog. Theor. Phys. 71 (1984) 1366 [INSPIRE].

    ADS  MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    A. Barvinsky and S. Solodukhin, Nonminimal coupling, boundary terms and renormalization of the Einstein-Hilbert action and black hole entropy, Nucl. Phys. B 479 (1996) 305 [gr-qc/9512047] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  20. 20.

    A.R. Zhitnitsky, Entropy, contact interaction with horizon and dark energy, Phys. Rev. D 84 (2011) 124008 [arXiv:1105.6088] [INSPIRE].

    ADS  Google Scholar 

  21. 21.

    W. Donnelly, A.C. Wall and A.C. Wall, Do gauge fields really contribute negatively to black hole entropy?, Phys. Rev. D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].

    ADS  Google Scholar 

  22. 22.

    D. Kabat, D. Sarkar and D. Sarkar, Cosmic string interactions induced by gauge and scalar fields, Phys. Rev. D 86 (2012) 084021 [arXiv:1206.5642] [INSPIRE].

    ADS  Google Scholar 

  23. 23.

    S.N. Solodukhin, One loop renormalization of black hole entropy due to nonminimally coupled matter, Phys. Rev. D 52 (1995) 7046 [hep-th/9504022] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. 24.

    D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Solodukhin.

Additional information

ArXiv ePrint: 1209.2677

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Solodukhin, S.N. Remarks on effective action and entanglement entropy of Maxwell field in generic gauge. J. High Energ. Phys. 2012, 36 (2012). https://doi.org/10.1007/JHEP12(2012)036

Download citation

Keywords

  • Black Holes
  • Renormalization Regularization and Renormalons