Advertisement

Journal of High Energy Physics

, 2012:16 | Cite as

Four results on ϕ 4 oscillons in D + 1 dimensions

  • Erik Alexander Andersen
  • Anders Tranberg
Article

Abstract

We present four results for oscillons in classical ϕ 4 theory in D + 1 space-time dimensions, based on numerical simulations. These include the oscillon lifetime and the dependence on D; evidence for the uniqueness of the oscillon; evidence for the existence of oscillons beyond D = 7; and a brief study of the spectrum of the radiation emitted from the oscillons before, during and after its ultimate demise.

Keywords

Solitons Monopoles and Instantons Nonperturbative Effects 

References

  1. [1]
    I. Bogolyubsky and V. Makhankov, On the pulsed soliton lifetime in two classical relativistic theory models, JETP Lett. 24 (1976) 12 [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Gleiser, Pseudostable bubbles, Phys. Rev. D 49 (1994) 2978 [hep-ph/9308279] [INSPIRE].ADSGoogle Scholar
  3. [3]
    E. J. Copeland, M. Gleiser and H.-R. Muller, Oscillons: resonant configurations during bubble collapse, Phys. Rev. D 52 (1995) 1920 [hep-ph/9503217] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Salmi and M. Hindmarsh, Radiation and relaxation of oscillons, Phys. Rev. D 85 (2012) 085033 [arXiv:1201.1934] [INSPIRE].ADSGoogle Scholar
  5. [5]
    P.M. Saffin and A. Tranberg, Oscillons and quasi-breathers in D + 1 dimensions, JHEP 01 (2007) 030 [hep-th/0610191] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Gleiser and A. Sornborger, Longlived localized field configurations in small lattices: application to oscillons, Phys. Rev. E 62 (2000) 1368 [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Hindmarsh and P. Salmi, Numerical investigations of oscillons in 2 dimensions, Phys. Rev. D 74 (2006) 105005 [hep-th/0606016] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Gleiser, d-dimensional oscillating scalar field lumps and the dimensionality of space, Phys. Lett. B 600 (2004) 126 [hep-th/0408221] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    E.P. Honda and M.W. Choptuik, Fine structure of oscillons in the spherically symmetric ϕ 4 Klein-Gordon model, Phys. Rev. D 65 (2002) 084037 [hep-ph/0110065] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    G. Fodor, P. Forgacs, P. Grandclement and I. Racz, Oscillons and quasi-breathers in the ϕ 4 Klein-Gordon model, Phys. Rev. D 74 (2006) 124003 [hep-th/0609023] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Gleiser and D. Sicilia, A general theory of oscillon dynamics, Phys. Rev. D 80 (2009) 125037 [arXiv:0910.5922] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Gleiser and D. Sicilia, Analytical characterization of oscillon energy and lifetime, Phys. Rev. Lett. 101 (2008) 011602 [arXiv:0804.0791] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Fodor, P. Forgacs, Z. Horvath and M. Mezei, Computation of the radiation amplitude of oscillons, Phys. Rev. D 79 (2009) 065002 [arXiv:0812.1919] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Broadhead and J. McDonald, Simulations of the end of supersymmetric hybrid inflation and non-topological soliton formation, Phys. Rev. D 72 (2005) 043519 [hep-ph/0503081] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Gleiser, N. Graham and N. Stamatopoulos, Generation of coherent structures after cosmic inflation, Phys. Rev. D 83 (2011) 096010 [arXiv:1103.1911] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M.A. Amin, R. Easther and H. Finkel, Inflaton fragmentation and oscillon formation in three dimensions, JCAP 12 (2010) 001 [arXiv:1009.2505] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.A. Amin, R. Easther, H. Finkel, R. Flauger and M.P. Hertzberg, Oscillons after inflation, Phys. Rev. Lett. 108 (2012) 241302 [arXiv:1106.3335] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Niels Bohr International Academy, Niels Bohr Institute and Discovery CenterCopenhagenDenmark

Personalised recommendations