Journal of High Energy Physics

, 2011:115 | Cite as

Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering

  • ZEPLIN-III Collaboration
  • E. Santos
  • B. Edwards
  • V. Chepel
  • H. M. Araújo
  • D. Y. Akimov
  • E. J. Barnes
  • V. A. Belov
  • A. A. Burenkov
  • A. Currie
  • L. DeViveiros
  • C. Ghag
  • A. Hollingsworth
  • M. Horn
  • G. E. Kalmus
  • A. S. Kobyakin
  • A. G. Kovalenko
  • V. N. Lebedenko
  • A. Lindote
  • M. I. Lopes
  • R. Lüscher
  • P. Majewski
  • A. St J. Murphy
  • F. Neves
  • S. M. Paling
  • J. Pinto da Cunha
  • R. Preece
  • J. J. Quenby
  • L. Reichhart
  • P. R. Scovell
  • C. Silva
  • V. N. Solovov
  • N. J. T. Smith
  • P. F. Smith
  • V. N. Stekhanov
  • T. J. Sumner
  • C. Thorne
  • R. J. Walker
Article

Abstract

We present an experimental study of single electron emission in ZEPLIN-III, a two-phase xenon experiment built to search for dark matter WIMPs, and discuss appli-cations enabled by the excellent signal-to-noise ratio achieved in detecting this signature. Firstly, we demonstrate a practical method for precise measurement of the free electron lifetime in liquid xenon during normal operation of these detectors. Then, using a realistic detector response model and backgrounds, we assess the feasibility of deploying such an instrument for measuring coherent neutrino-nucleus elastic scattering using the ionisation channel in the few-electron regime. We conclude that it should be possible to measure this elusive neutrino signature above an ionisation threshold of ~3 electrons both at a stopped pion source and at a nuclear reactor. Detectable signal rates are larger in the reactor case, but the triggered measurement and harder recoil energy spectrum afforded by the accelerator source enable lower overall background and fiducialisation of the active volume.

Keywords

Neutrino Detectors and Telescopes 

References

  1. [1]
    T.J. Sumner, A two-phase xenon dark matter detector, in Identification of dark matter, N. Spooner and V. Kudryavtsev ed., World Scientific, Singapore (2001) 452.CrossRefGoogle Scholar
  2. [2]
    D. Akimov, G. Alner, H. Araujo, A. Bewick, C. Bungau, et al., The ZEPLIN-III dark matter detector: instrument design, manufacture and commissioning, Astropart. Phys. 27 (2007) 46 [astro-ph/0605500] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    B.A. Dolgoshein, V.N. Lebedenko and B.U. Rodionov, New method of registration of ionizing-particle tracks in condensed matter, JETP Lett. 11 (1970) 351.ADSGoogle Scholar
  4. [4]
    A. Barabash and A. Bolozdynya, HOW to detect the dark matter of the galaxy if it is made up of weakly interacting neutral particles with masses 1 GeV/c 2 - 10 GeV/c 2 , JETP Lett. 49 (1989) 356 [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Bolozdynya et al., Emission detectors, IEEE Trans. Nuc. Sci. 42 (1995) 565.CrossRefADSGoogle Scholar
  6. [6]
    A. Fonseca et al., Study of secondary scintillation in xenon vapour, IEEE Trans. Nuc. Sci. 1 (2004) 572.Google Scholar
  7. [7]
    C. Hagmann and A. Bernstein, Two-phase emission detector for measuring coherent neutrino-nucleus scattering, IEEE Trans. Nucl. Sci. 51 (2004) 2151 [nucl-ex/0411004] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    S. Sangiorgio et al., The hunt for coherent neutrino-nucleus scattering with ionization argon detectors, in IEEE NSS Conf. Rec. 2010 (2010) 102.Google Scholar
  9. [9]
    XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, arXiv:1108.5383 [INSPIRE].
  11. [11]
    B. Edwards, H. Araujo, V. Chepel, D. Cline, T. Durkin, et al., Measurement of single electron emission in two-phase xenon, Astropart. Phys. 30 (2008) 54 [arXiv:0708.0768] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    A. Burenkov, D. Akimov, Y. Grishkin, A. Kovalenko, V. Lebedenko, et al., Detection of a single electron in xenon-based electroluminescent detectors, Phys. Atom. Nucl. 72 (2009) 653 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    F. Neves, D. Akimov, H. Araujo, E. Barnes, V. Belov, et al., ZE3RA: the ZEPLIN-III reduction and analysis package, 2011 JINST 6 P11004 [arXiv:1106.0808] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    V. Lebedenko, H. Araujo, E. Barnes, A. Bewick, R. Cashmore, et al., Result from the first science run of the ZEPLIN-III dark matter search experiment, Phys. Rev. D 80 (2009) 052010 [arXiv:0812.1150] [INSPIRE].ADSGoogle Scholar
  15. [15]
    ZEPLIN-III collaboration, V. Lebedenko et al., Limits on the spin-dependent WIMP-nucleon cross-sections from the first science run of the ZEPLIN-III experiment, Phys. Rev. Lett. 103 (2009) 151302 [arXiv:0901.4348] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    ZEPLIN-III collaboration, D. Akimov et al., Limits on inelastic dark matter from ZEPLIN-III, Phys. Lett. B 692 (2010) 180 [arXiv:1003.5626] [INSPIRE].ADSGoogle Scholar
  17. [17]
    H. Araujo, A. Bewick, D. Davidge, J. Dawson, T. Ferbel, et al., Low-temperature study of 35 photomultiplier tubes for the ZEPLIN III experiment, Nucl. Instrum. Meth. A 521 (2004) 407 [INSPIRE].ADSGoogle Scholar
  18. [18]
    H. Araujo, D. Akimov, E. Barnes, V. Belov, A. Bewick, et al., Radioactivity backgrounds in ZEPLIN-III, arXiv:1104.3538 [INSPIRE].
  19. [19]
    D. Akimov, H. Araujo, E. Barnes, V. Belov, A. Bewick, et al., WIMP-nucleon cross-section results from the second science run of ZEPLIN-III, arXiv:1110.4769 [INSPIRE].
  20. [20]
    E. Gushchin et al., Electron emission from condensed noble gases, Sov. Phys. JETP 49 (1979) 856.ADSGoogle Scholar
  21. [21]
    A.I. Bolozdynya, Two-phase emission detectors and their applications, Nucl. Instrum. Meth. A 422 (1999) 314.ADSGoogle Scholar
  22. [22]
    R.J. Noer, Electron field emission from broad-area electrodes, Appl. Phys. A 28 (1982) 1.ADSGoogle Scholar
  23. [23]
    B.M. Cox and W.T. Williams, Field-emission sites on unpolished stainless steel, J. Phys. D: Appl. Phys. 10 (1977) L5.CrossRefADSGoogle Scholar
  24. [24]
    E. Gordon, O. Rzhevskii, and V. Khmelenko, Feasibility of the construction of an electric-discharge excimer laser with a condensed rare gas as the active medium, Quantum Electron. 24 (1994) 209.CrossRefADSGoogle Scholar
  25. [25]
    R. Veenhof, Garfield — simulation of gaseous detectors, CERN Prog. Lib. W 5050 (1984).Google Scholar
  26. [26]
    R. Fowler and L. Nordheim, Electron emission in intense electric fields, Proc. Roy. Soc. Lond. A 119 (1928) 173 [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Horn, V. Belov, D. Akimov, H. Araujo, E. Barnes, et al., Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data, Phys. Lett. B 705 (2011) 471 [arXiv:1106.0694] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Manzur, A. Curioni, L. Kastens, D. McKinsey, K. Ni, et al., Scintillation efficiency and ionization yield of liquid xenon for mono-energetic nuclear recoils down to 4 keV, Phys. Rev. C 81 (2010) 025808 [arXiv:0909.1063] [INSPIRE].ADSGoogle Scholar
  29. [29]
    D.Z. Freedman, Coherent neutrino nucleus scattering as a probe of the weak neutral current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Scholberg, T. Wongjirad, E. Hungerford, A. Empl, D. Markoff, et al., The CLEAR experiment, arXiv:0910.1989 [INSPIRE].
  31. [31]
    J. Collar, New approaches to dark matter and neutrino detection, J. Phys.: Conf. Ser 173 (2009) 012022.CrossRefADSGoogle Scholar
  32. [32]
    A. Anderson, J. Conrad, E. Figueroa-Feliciano, K. Scholberg and J. Spitz, Coherent neutrino scattering in dark matter detectors, Phys. Rev. D 84 (2011) 013008 [arXiv:1103.4894].ADSGoogle Scholar
  33. [33]
    J.N. Bahcall and M. Pinsonneault, Solar models with helium and heavy element diffusion, Rev. Mod. Phys. 67 (1995) 781 [hep-ph/9505425] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    V. Kopeikin, L. Mikaelyan and V. Sinev, Spectrum of electronic reactor anti-neutrinos, Phys. Atom. Nucl. 60 (1997) 172 [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Vogel and J. Engel, Neutrino electromagnetic form-factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Avenier, Neutrino oscillation experiments at reactors, Nucl. Instrum. Meth. A 284 (1989) 29 [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Porta, Reactor neutrino detection for non proliferation with the Nucifer experiment, J. Phys.: Conf. Ser. 203 (2010) 012092.CrossRefADSGoogle Scholar
  38. [38]
    D. Akimov, A. Bondar, A. Burenkov and A. Buzulutskov, Detection of reactor antineutrino coherent scattering off nuclei with a two-phase noble gas detector, 2009 JINST 4 P06010 [arXiv:0903.4821] [INSPIRE].
  39. [39]
    K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev. D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE].ADSGoogle Scholar
  40. [40]
    B. Armbruster et al., KARMEN at ISIS: the advantage of a pulsed neutrino source in the search for neutrino oscillations and neutrino nuclear interactions, Nucl. Phys. A 629 (1998) 507.ADSGoogle Scholar
  41. [41]
    D. Akimov, H. Araujo, E. Barnes, V. Belov, A. Burenkov, et al., The ZEPLIN-III anti-coincidence veto detector, Astropart. Phys. 34 (2010) 151 [arXiv:1004.4207] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    C. Ghag, D. Akimov, H. Araujo, E. Barnes, V. Belov, et al., Performance of the veto detector incorporated into the ZEPLIN-III experiment, Astropart. Phys. 35 (2011) 76 [arXiv:1103.0393] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    T. Takahashi, S. Konno, T. Hamada, M. Miyajima, S. Kubota, et al., Average energy expended per ion pair in liquid xenon, Phys. Rev. A 12 (1975) 1771 [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y. Efremenko and W.R. Hix, Opportunities for neutrino physics at the Spallation Neutron Source (SNS), J. Phys.: Conf. Ser. 173 (2009) 012006.CrossRefADSGoogle Scholar
  45. [45]
    J. Thomason et al., Megawatt upgrades for the ISIS facility, in Proc. EPAC’08 — 11th European Particle Accelerator Conference (2008) 3554.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • ZEPLIN-III Collaboration
  • E. Santos
    • 1
    • 2
  • B. Edwards
    • 3
  • V. Chepel
    • 1
  • H. M. Araújo
    • 2
  • D. Y. Akimov
    • 4
  • E. J. Barnes
    • 5
  • V. A. Belov
    • 4
  • A. A. Burenkov
    • 4
  • A. Currie
    • 2
  • L. DeViveiros
    • 1
  • C. Ghag
    • 5
  • A. Hollingsworth
    • 5
  • M. Horn
    • 2
  • G. E. Kalmus
    • 3
  • A. S. Kobyakin
    • 4
  • A. G. Kovalenko
    • 4
  • V. N. Lebedenko
    • 2
  • A. Lindote
    • 1
    • 3
  • M. I. Lopes
    • 1
  • R. Lüscher
    • 3
  • P. Majewski
    • 3
  • A. St J. Murphy
    • 5
  • F. Neves
    • 1
    • 2
  • S. M. Paling
    • 3
  • J. Pinto da Cunha
    • 1
  • R. Preece
    • 3
  • J. J. Quenby
    • 2
  • L. Reichhart
    • 5
  • P. R. Scovell
    • 5
  • C. Silva
    • 1
  • V. N. Solovov
    • 1
  • N. J. T. Smith
    • 3
  • P. F. Smith
    • 3
  • V. N. Stekhanov
    • 4
  • T. J. Sumner
    • 2
  • C. Thorne
    • 2
  • R. J. Walker
    • 2
  1. 1.LIP-Coimbra & Department of Physics of the University of CoimbraCoimbraPortugal
  2. 2.High Energy Physics group, Blackett LaboratoryImperial College LondonLondonU.K.
  3. 3.Particle Physics DepartmentSTFC Rutherford Appleton LaboratoryChiltonU.K.
  4. 4.Institute for Theoretical and Experimental PhysicsMoscowRussia
  5. 5.School of Physics & AstronomyUniversity of EdinburghEdinburghU.K.

Personalised recommendations