Journal of High Energy Physics

, 2011:88 | Cite as

The decay Bs → μ+μ: updated SUSY constraints and prospects

  • A. G. Akeroyd
  • F. Mahmoudi
  • D. Martínez Santos
Open Access
Article

Abstract

We perform a study of the impact of the recently released limits on BR(Bs → μ+μ) by LHCb and CMS on several SUSY models. We show that the obtained constraints can be superior to those which are derived from direct searches for SUSY particles in some scenarios, and the use of a double ratio of purely leptonic decays involving Bs → μ+μ can further strengthen such constraints. We also discuss the experimental sensitivity and prospects for observation of Bs → μ+μ during the \( \sqrt {s} = 7\;{\text{TeV}} \) run of the LHC, and its potential implications.

Keywords

Rare Decays Supersymmetric Standard Model Beyond Standard Model B-Physics 

References

  1. [1]
    M.S. Carena, A. Menon, R. Noriega-Papaqui, A. Szynkman and C. Wagner, Constraints on B and Higgs physics in minimal low energy supersymmetric models, Phys. Rev. D 74 (2006) 015009 [hep-ph/0603106] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.R. Ellis, S. Heinemeyer, K. Olive, A. Weber and G. Weiglein, The supersymmetric parameter space in light of B physics observables and electroweak precision data, JHEP 08 (2007) 083 [arXiv:0706.0652]. [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    F. Mahmoudi, New constraints on supersymmetric models from b → , JHEP 12 (2007) 026 [arXiv:0710.3791] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    S. Heinemeyer, X. Miao, S. Su and G. Weiglein, B physics observables and electroweak precision data in the CMSSM, mGMSB and mAMSB, JHEP 08 (2008) 087 [arXiv:0805.2359]. [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    D. Eriksson, F. Mahmoudi and O. Stal, Charged Higgs bosons in minimal supersymmetry: updated constraints and experimental prospects, JHEP 11 (2008) 035 [arXiv:0808.3551]. [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    A.K. Alok and S.K. Gupta, B s → μ + μ decay in the R-parity violating minimal supergravity, European Physical Journal C 65 (2010) 491 [arXiv:0904.1878].CrossRefADSGoogle Scholar
  7. [7]
    S. Choudhury and N. Gaur, Dileptonic decay of B s meson in SUSY models with large tan β, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307]. [INSPIRE].ADSGoogle Scholar
  8. [8]
    K. Babu and C.F. Kolda, Higgs mediated B 0 → μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476]. [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    C.-S. Huang, W. Liao, Q.-S. Yan and S.-H. Zhu, B s → lepton + lepton - in a general 2 HDM and MSSM, Phys. Rev. D 63 (2001) 114021 [Erratum ibid. D 64 (2001) 059902] [hep-ph/0006250] [INSPIRE].ADSGoogle Scholar
  10. [10]
    CDF collaboration, T. Aaltonen et al., Search for \( B_s^0 \to {\mu^{ + }}{\mu^{ - }} \) and \( B_d^0 \to {\mu^{ + }}{\mu^{ - }} \) decays with 2 fb −1 of \( p\overline p \) collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    D0 collaboration, V.M. Abazov et al., Search for the rare decay \( B_s^0 \to {\mu^{ + }}{\mu^{ - }} \), Phys. Lett. B 693 (2010) 539 [arXiv:1006.3469] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CDF collaboration, T. Aaltonen et al., Search for B s → μ + μ and B d → μ + μ decays with CDF II, Phys. Rev. Lett. 107 (2011) 239903 [arXiv:1107.2304] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    LHCb collaboration, R. Aaij et al., Search for the rare decays \( B_{{(s)}}^0 \to {\mu^{ + }}{\mu^{ - }} \) with 300 pb −1 at LHCb, LHCb-CONF-2011-037.Google Scholar
  14. [14]
    CMS collaboration, S. Chatrchyan et al., Search for \( B_{{(s)}}^0 \to {\mu^{ + }}{\mu^{ - }} \) and B 0 → μ + μ decays in pp collisions at \( \sqrt {s} = 7\;TeV \), PH-EP-2011-120 (2011).Google Scholar
  15. [15]
    CMS and LHCB collaborations, Search for the rare decay \( B_{{(s)}}^0 \to {\mu^{ + }}{\mu^{ - }} \) at the LHC with the CMS and LHCb experiments combination of LHC results of the search for B s → μ + μ decays, LHCb-CONF-2011-047.Google Scholar
  16. [16]
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of B → k*γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].CrossRefMATHADSGoogle Scholar
  17. [17]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: extension to NMSSM, Comput. Phys. Commun. 180 (2009) 1718 [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    B. Grinstein, On a precise calculation of f (B s)/f B / f (D s) / f (D) and its implications on the interpretation of \( B\overline B \) mixing, Phys. Rev. Lett. 71 (1993) 3067 [hep-ph/9308226]. [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    Z. Ligeti, |V cb| and |V ub| theoretical developments, eConf C 030603 (2003) JEU10 [hep-ph/0309219]. [INSPIRE].Google Scholar
  21. [21]
    A. Hocker and Z. Ligeti, CP violation and the CKM matrix, Ann. Rev. Nucl. Part. Sci. 56 (2006) 501 [hep-ph/0605217]. [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A. Akeroyd and F. Mahmoudi, Measuring V ub and probing SUSY with double ratios of purely leptonic decays of B and D mesons, JHEP 10 (2010) 038 [arXiv:1007.2757]. [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    J.R. Ellis, K.A. Olive and V.C. Spanos, On the interpretation of B s → μ + μ in the CMSSM, Phys. Lett. B 624 (2005) 47 [hep-ph/0504196]. [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.R. Ellis, S. Heinemeyer, K. Olive and G. Weiglein, Light heavy MSSM Higgs bosons at large tanβ , Phys. Lett. B 653 (2007) 292 [arXiv:0706.0977] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Golowich, J. Hewett, S. Pakvasa, A.A. Petrov and G.K. Yeghiyan, Relating B s mixing and B s → μ + μ with new physics, Phys. Rev. D 83 (2011) 114017 [arXiv:1102.0009] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Bobeth, T. Ewerth, F. Krüger and J. Urban, Analysis of neutral Higgs boson contributions to the decays \( \overline b ({s^{)}} \to {\ell^{ + }}{\ell^{ - }} \) and \( \overline B \to K{\ell^{ + }}{\ell^{ - }} \), Phys. Rev. D 64 (2001) 074014 [hep-ph/0104284] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Bobeth, A.J. Buras, F. Krüger and J. Urban, QCD corrections to \( \overline B \to {X_{{d,s}}}\nu \overline \nu {\overline B_{{d,s}}} \to {\ell^{ + }}{\ell^{ - }},\;K \to \pi \nu \overline \nu \) and \( {K_L} \to {\mu^{ + }}{\mu^{ - }} \) in the MSSM, Nucl. Phys. B 630 (2002) 87 [hep-ph/0112305]. [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, δm d,s , b 0 d, s → μ + μ and B → X s γ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    C.-S. Huang, W. Liao and Q.-S. Yan, The promising process to distinguish supersymmetric models with large tan β from the standard model: B → X s μ + μ , Phys. Rev. D 59 (1999) 011701 [hep-ph/9803460] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C.-S. Huang and Q.-S. Yan, B → X s τ + τ in the flipped SU(5) model, Phys. Lett. B 442 (1998) 209 [hep-ph/9803366]. [INSPIRE].ADSGoogle Scholar
  31. [31]
    HPQCD collaboration, E. Gamiz, C.T. Davies, G. Lepage, J. Shigemitsu and M. Wingate, Neutral B meson mixing in unquenched lattice QCD, Phys. Rev. D 80 (2009) 014503 [arXiv:0902.1815] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Bernard, C. DeTar, M. Di Pierro, A. El-Khadra, R. Evans, et al., B and D meson decay constants, PoS LATTICE2008 (2008) 278 [arXiv:0904.1895] [INSPIRE].Google Scholar
  33. [33]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Fermilab Lattice and MILC collaborations, J. Simone et al., The decay constants \( {f_{{{D_s}}}},{f_{{D + }}},{f_{{{B_s}}}} \) and f B from lattice QCD, PoS LATTICE2010 (2010) 317.Google Scholar
  35. [35]
    ETM collaboration, P. Dimopoulos et al., Lattice QCD determination of m b f B and \( {f_{{{{\text{B}}_{\text{s}}}}}} \) with twisted mass Wilson fermions, arXiv:1107.1441 [INSPIRE].
  36. [36]
    P. Vranas et al., Lattice 2011, Lake Tahoe, California U.S.A., 11-16 July 2011.Google Scholar
  37. [37]
    J. Shigemitsu, H. Na, C. Davies, R. Horgan, C. Monahan, et al., Studies of B and B s meson leptonic decays with NRQCD bottom and HISQ light/strange quarks, arXiv:1110.5783 [INSPIRE].
  38. [38]
    C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, High-Precision \( {f_{{{b_s}}}} \) and HQET from relativistic lattice QCD, arXiv:1110.4510 [INSPIRE].
  39. [39]
    R.J. Oakes, Ratios of charmed and beauty meson decay constants, Phys. Rev. Lett. 73 (1994) 381 [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    UTfit collaboration, M. Bona et al., An improved standard model prediction of BR(B → τν) and its implications for new physics, Phys. Lett. B 687 (2010) 61 [arXiv:0908.3470] [INSPIRE].ADSGoogle Scholar
  41. [41]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ-lepton properties, arXiv:1010.1589 [INSPIRE].
  42. [42]
    BELLE collaboration, H. Ha et al., Measurement of the decay B 0 → π + ν and determination of |V ub|, Phys. Rev. D 83 (2011) 071101 [arXiv:1012.0090] [INSPIRE].ADSGoogle Scholar
  43. [43]
    BABAR collaboration, P. del Amo Sanchez et al., Study of B → πℓν and B → ρℓν decays and determination of |V ub|, Phys. Rev. D 83 (2011) 032007 [arXiv:1005.3288] [INSPIRE].ADSGoogle Scholar
  44. [44]
    On behalf of the BABAR collaboration, M. Sigamani, Measurements of the partial branching fraction for B → Xuℓν and the determination of V ub, PoS ICHEP2010 (2010) 265 [arXiv:1103.0560] [INSPIRE].Google Scholar
  45. [45]
    Belle collaboration, P. Urquijo et al., Measurement of |V ub| from inclusive charmless semileptonic B decays, Phys. Rev. Lett. 104 (2010) 021801 [arXiv:0907.0379] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    A. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from \( D_s^{{ + - }} \to {\mu^{{ + - }}}\nu \) and \( D_s^{{ + - }} \to {\tau^{{ + - }}}\nu \), JHEP 04 (2009) 121 [arXiv:0902.2393]. [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    W.-S. Hou, Enhanced charged Higgs boson effects in B → τ anti-neutrino, μ anti-neutrino and B → τ anti-neutrino + ×, Phys. Rev. D 48 (1993) 2342 [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Akeroyd and S. Recksiegel, The effect of H +− on B +−→ τ +− ν(τ) and B +−→ μ +− muon neutrino, J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. Itoh, S. Komine and Y. Okada, Tauonic B decays in the minimal supersymmetric standard model, Prog. Theor. Phys. 114 (2005) 179 [hep-ph/0409228] [INSPIRE].CrossRefMATHADSGoogle Scholar
  50. [50]
    G. Isidori and P. Paradisi, Hints of large tan β in flavour physics, Phys. Lett. B 639 (2006) 499 [hep-ph/0605012]. [INSPIRE].ADSGoogle Scholar
  51. [51]
    D. Asner, T. Barnes, J. Bian, I. Bigi, N. Brambilla, et al., Physics at BES-III, Int. J. Mod. Phys. A 24 (2009) S1 [arXiv:0809.1869] [INSPIRE].Google Scholar
  52. [52]
    M. Farina, M. Kadastik, D. Pappadopulo, J. Pata, M. Raidal, et al., Implications of XENON100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    B. Dutta, Y. Mimura and Y. Santoso, B s → μ + μ in supersymmetric grand unified theories, arXiv:1107.3020 [INSPIRE].
  54. [54]
    S. Akula, D. Feldman, P. Nath and G. Peim, Excess observed in CDF \( B_s^0 \to {\mu^{ + }}{\mu^{ - }} \) and SUSY at the LHC, arXiv:1107.3535 [INSPIRE].
  55. [55]
    D. Hooper and C. Kelso, Implications of a large B s → μ + μ branching fraction for the minimal supersymmetric standard model, arXiv:1107.3858 [INSPIRE].
  56. [56]
    W. Altmannshofer, M. Carena, S. Gori and A. de la Puente, Signals of CP-violation beyond the MSSM in Higgs and flavor physics, Phys. Rev. D 84 (2011) 095027 [arXiv:1107.3814] [INSPIRE].ADSGoogle Scholar
  57. [57]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145]. [INSPIRE].CrossRefMATHADSGoogle Scholar
  58. [58]
    U. Ellwanger and C. Hugonie, NMSPEC: a Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134]. [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].CrossRefMATHADSGoogle Scholar
  60. [60]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    CDF and D0 collaboration, T.T. E.W. Group, Combination of CDF and D0 results on the mass of the top quark using up to 5.6 fb −1 of data, arXiv:1007.3178 [INSPIRE].
  62. [62]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].ADSGoogle Scholar
  64. [64]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].ADSGoogle Scholar
  65. [65]
    N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192]. [INSPIRE].ADSGoogle Scholar
  67. [67]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155]. [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  68. [68]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442]. [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378]. [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    A. Arbey, A. Deandrea and A. Tarhini, Anomaly mediated SUSY breaking scenarios in the light of cosmology and in the dark (matter), JHEP 05 (2011) 078 [arXiv:1103.3244]. [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-Energy supersymmetry, Nucl. Phys. B 207 (1982) 96 [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    C.R. Nappi and B.A. Ovrut, Supersymmetric extension of the SU(3) × SU(2) × U(1) model, Phys. Lett. B 113 (1982) 175 [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].ADSGoogle Scholar
  76. [76]
    T. Elliott, S. King and P. White, Unification constraints in the next-to-minimal supersymmetric standard model, Phys. Lett. B 351 (1995) 213 [hep-ph/9406303]. [INSPIRE].ADSGoogle Scholar
  77. [77]
    S. King and P. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].ADSGoogle Scholar
  78. [78]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys. B 492 (1997) 21 [hep-ph/9611251]. [INSPIRE].ADSGoogle Scholar
  79. [79]
    G. Bélanger, C. Hugonie and A. Pukhov, Precision measurements, dark matter direct detection and LHC Higgs searches in a constrained NMSSM, JCAP 01 (2009) 023 [arXiv:0811.3224]. [INSPIRE].Google Scholar
  80. [80]
    F. Domingo and U. Ellwanger, Updated constraints from B physics on the MSSM and the NMSSM, JHEP 12 (2007) 090 [arXiv:0710.3714]. [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    F. Mahmoudi, J. Rathsman, O. Stal and L. Zeune, Light Higgs bosons in phenomenological NMSSM, Eur. Phys. J. C 71 (2011) 1608 [arXiv:1012.4490] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    T. Junk, Sensitivity, exclusion and discovery with small signals, large backgrounds, and large systematic uncertainties, CDF/DOC/STATISTICS/PUBLIC/8128 (2007).Google Scholar
  83. [83]
    LHCb collaboration, R. Aaij et al., Average f s /f d b-hadron production fraction for 7 TeV pp collisions, LHCb-CONF-2011-034.Google Scholar
  84. [84]
    D. Martínez Santos, Study of the very rare decay Bs → μ + μ − in LHCb, CERN-THESIS-2010-068 (2010).Google Scholar
  85. [85]
    A. Dedes, J. Rosiek and P. Tanedo, Complete one-loop MSSM predictions for B → lepton leptonat the Tevatron and LHC, Phys. Rev. D 79 (2009) 055006 [arXiv:0812.4320] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • A. G. Akeroyd
    • 1
  • F. Mahmoudi
    • 2
  • D. Martínez Santos
    • 2
  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom
  2. 2.CERN, Physics DepartmentGeneva 23Switzerland

Personalised recommendations