Journal of High Energy Physics

, 2011:80

A twisted look on kappa-Minkowski: U(1) gauge theory

Article

Abstract

Kappa-Minkowski space-time is an example of noncommutative space-time with potentially interesting phenomenological consequences. However, the construction of field theories on this space, although operationally well-defined, is plagued with ambiguities. A part of ambiguities can be resolved by clarifying the geometrical picture of gauge transformations on the κ-Minkowski space-time. To this end we use the twist approach to construct the noncommutative U(1) gauge theory coupled to fermions. However, in this approach we cannot maintain the kappa-Poincaré symmetry; the corresponding symmetry of the twisted kappa-Minkowski space is the twisted igl(1,3) symmetry. We construct an action for the gauge and matter fields in a geometric way, as an integral of a maximal form. We use the Seiberg-Witten map to relate noncommutative and commutative degrees of freedom and expand the action to obtain the first order corrections in the deformation parameter.

Keywords

Non-Commutative Geometry Gauge Symmetry 

References

  1. [1]
    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [INSPIRE].CrossRefMATHADSGoogle Scholar
  2. [2]
    V. Chari, A.N. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge U.K. (1995).MATHGoogle Scholar
  3. [3]
    W.J. Fairbairn and C. Meusburger, Quantum deformation of two four-dimensional spin foam models, arXiv:1012.4784 [INSPIRE].
  4. [4]
    A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaré algebra, Phys. Lett. B 264 (1991) 331 [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett. B 293 (1992) 344 [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    P. Kosinski and P. Maslanka, The Duality between κ-Poincaré algebra and kappa Poincaré group, hep-th/9411033 [INSPIRE].
  9. [9]
    G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35 [gr-qc/0012051] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    G. Amelino-Camelia, Testable scenario for relativity with minimum length, Phys. Lett. B 510 (2001) 255 [hep-th/0012238] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403 [hep-th/0112090] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    J. Kowalski-Glikman and S. Nowak, Doubly special relativity theories as different bases of κ-Poincaré algebra, Phys. Lett. B 539 (2002) 126 [hep-th/0203040] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    G. Gubitosi and F. Mercati, Relative Locality in κ-Poincaré, arXiv:1106.5710 [INSPIRE].
  14. [14]
    S. Hossenfelder, Bounds on an energy-dependent and observer-independent speed of light from violations of locality, Phys. Rev. Lett. 104 (2010) 140402 [arXiv:1004.0418] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    G. Amelino-Camelia, M. Matassa, F. Mercati and G. Rosati, Taming Nonlocality in Theories with Planck-Scale Deformed Lorentz Symmetry, Phys. Rev. Lett. 106 (2011) 071301 [arXiv:1006.2126] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    S. Hossenfelder, Reply to arXiv:1006.2126 by Giovanni Amelino-Camelia et al., arXiv:1006.4587 [INSPIRE].
  17. [17]
    G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev. D 84 (2011) 084010 [arXiv:1101.0931] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, Relative locality: A deepening of the relativity principle, Gen. Rel. Grav. 43 (2011) 2547 [arXiv:1106.0313] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  19. [19]
    L. Freidel and L. Smolin, Gamma ray burst delay times probe the geometry of momentum space, arXiv:1103.5626 [INSPIRE].
  20. [20]
    G. Amelino-Camelia and L. Smolin, Prospects for constraining quantum gravity dispersion with near term observations, Phys. Rev. D 80 (2009) 084017 [arXiv:0906.3731] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Dimitrijević, L. Jonke and L. Möller, U(1) gauge field theory on kappa-Minkowski space, JHEP 09 (2005) 068 [hep-th/0504129] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess and M. Wohlgenannt, Deformed field theory on kappa space-time, Eur. Phys. J. C 31 (2003) 129 [hep-th/0307149] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Dimitrijević, F. Meyer, L. Möller and J. Wess, Gauge theories on the kappa Minkowski space-time, Eur. Phys. J. C 36 (2004) 117 [hep-th/0310116] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    A. Connes, Non-commutative Geometry, Academic Press, New York U.S.A. (1994).Google Scholar
  25. [25]
    G. Landi, An Introduction to noncommutative spaces and their geometry, hep-th/9701078 [INSPIRE].
  26. [26]
    J. Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, second Edition, Cambridge University Press, Cambridge U.K. (1999).CrossRefMATHGoogle Scholar
  27. [27]
    P. Aschieri, M. Dimitrijević, P. Kulish, F. Lizzi and J. Wess, Lecture notes in physics. Vol. 774: Noncommutative spacetimes: Symmetries in noncommutative geometry and field theory, Springer, Heidelberg Germany (2009).Google Scholar
  28. [28]
    J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16 (2000) 161 [hep-th/0001203] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The Standard model on noncommutative space-time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Noncommutative GUTs, standard model and C,P,T, Nucl. Phys. B 651 (2003) 45 [hep-th/0205214] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    W. Behr, N. Deshpande, G. Duplančić, P. Schupp, J. Trampetić and J. Wess, The Z → gamma gamma, g g decays in the noncommutative standard model, Eur. Phys. J. C 29 (2003) 441 [hep-ph/0202121] [INSPIRE].ADSGoogle Scholar
  32. [32]
    B. Melić, K. Passek-Kumerički, P. Schupp, J. Trampetić and M. Wohlgennant, The Standard model on non-commutative space-time: Electroweak currents and Higgs sector, Eur. Phys. J. C 42 (2005) 483 [hep-ph/0502249] [INSPIRE].ADSGoogle Scholar
  33. [33]
    B. Melić, K. Passek-Kumerički, J. Trampetić, P. Schupp and M. Wohlgenannt, The Standard model on non-commutative space-time: Strong interactions included, Eur. Phys. J. C 42 (2005) 499 [hep-ph/0503064] [INSPIRE].ADSGoogle Scholar
  34. [34]
    H. Grosse and R. Wulkenhaar, Renormalization of phi 4 theory on noncommutative R 4 in the matrix base, Commun. Math. Phys. 256 (2005) 305 [hep-th/0401128] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  35. [35]
    M. Burić, D. Latas and V. Radovanović, Renormalizability of noncommutative SU(N) gauge theory, JHEP 02 (2006) 046 [hep-th/0510133] [INSPIRE].ADSGoogle Scholar
  36. [36]
    C. Martin and C. Tamarit, Renormalisability of noncommutative GUT inspired field theories with anomaly safe groups, JHEP 12 (2009) 042 [arXiv:0910.2677] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    V. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254 [INSPIRE].Google Scholar
  38. [38]
    P. Aschieri and L. Castellani, Noncommutative D = 4 gravity coupled to fermions, JHEP 06 (2009) 086 [arXiv:0902.3817] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    A. Agostini, F. Lizzi and A. Zampini, Generalized Weyl systems and kappa Minkowski space, Mod. Phys. Lett. A 17 (2002) 2105 [hep-th/0209174] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    M. Dimitrijević, L. Möller and E. Tsouchnika, Derivatives, forms and vector fields on the kappa-deformed Euclidean space, J. Phys. A 37 (2004) 9749 [hep-th/0404224] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Meljanac, A. Samsarov, M. Stojić and K. Gupta, Kappa-Minkowski space-time and the star product realizations, Eur. Phys. J. C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    P. Kosinski, P. Maslanka, J. Lukierski and A. Sitarz, Generalized κ-deformations and deformed relativistic scalar fields on noncommutative Minkowski space, hep-th/0307038 [INSPIRE].
  43. [43]
    A. Agostini, G. Amelino-Camelia, M. Arzano and F. D’Andrea, Action functional for kappa-Minkowski noncommutative spacetime, hep-th/0407227 [INSPIRE].
  44. [44]
    A. Sitarz, Noncommutative differential calculus on the kappa Minkowski space, Phys. Lett. B 349 (1995) 42 [hep-th/9409014] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    E. Beggs and S. Majid, Nonassociative Riemannian geometry by twisting, J. Phys. Conf. Ser. 254 (2010) 012002 [arXiv:0912.1553] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    S. Meljanac and S. Kresić-Jurić, Differential structure on kappa-Minkowski space and kappa-Poincaré algebra, Int. J. Mod. Phys. A 26 (2011) 3385 [arXiv:1004.4647] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Meljanac and A. Samsarov, Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance, Int. J. Mod. Phys. A 26 (2011) 1439 [arXiv:1007.3943] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    S. Meljanac, A. Samsarov, J. Trampetić and M. Wohlgenannt, Noncommutative kappa-Minkowski phi4 theory: Construction, properties and propagation, arXiv:1107.2369 [INSPIRE].
  49. [49]
    A. Borowiec and A. Pachol, kappa-Minkowski spacetime as the result of Jordanian twist deformation, Phys. Rev. D 79 (2009) 045012 [arXiv:0812.0576] [INSPIRE].ADSGoogle Scholar
  50. [50]
    B. Jurčo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformations for nonAbelian gauge groups on noncommutative spaces, Eur. Phys. J. C 17 (2000) 521 [hep-th/0006246] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Burić, D. Latas, V. Radovanović and J. Trampetić, Chiral fermions in noncommutative electrodynamics: Renormalizability and dispersion, Phys. Rev. D 83 (2011) 045023 [arXiv:1009.4603] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Lukierski, H. Ruegg and W.J. Zakrzewski, Classical and quantum-mechanics of free κ-relativistic systems, Annals Phys. 243 (1995) 90 [hep-th/9312153].CrossRefMATHADSMathSciNetGoogle Scholar
  53. [53]
    G. Amelino-Camelia and S. Majid, Waves on noncommutative space-time and gamma-ray bursts, Int. J. Mod. Phys. A 15 (2000) 4301 [hep-th/9907110] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].
  55. [55]
    R.C. Myers and M. Pospelov, Ultraviolet modifications of dispersion relations in effective field theory, Phys. Rev. Lett. 90 (2003) 211601 [hep-ph/0301124] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    P.A. Bolokhov and M. Pospelov, Low-energy constraints on kappa-Minkowski extension of the Standard Model, Phys. Lett. B 677 (2009) 160 [arXiv:0807.1522] [INSPIRE].ADSGoogle Scholar
  57. [57]
    F.W. Hehl and Y.N. Obukhov, How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion and curvature?, Lect. Notes Phys. 562 (2001) 479 [gr-qc/0001010] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of BelgradeBeogradSerbia
  2. 2.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations