Advertisement

Journal of High Energy Physics

, 2011:77 | Cite as

From necklace quivers to the F -theorem, operator counting, and T (U(N))

  • Daniel R. Gulotta
  • Christopher P. Herzog
  • Silviu S. PufuEmail author
Article

Abstract

The matrix model of Kapustin, Willett, and Yaakov is a powerful tool for exploring the properties of strongly interacting superconformal Chern-Simons theories in 2+1 dimensions. In this paper, we use this matrix model to study necklace quiver gauge theories with \( \mathcal{N} = {3} \) supersymmetry and U(N) d gauge groups in the limit of large N. In its simplest application, the matrix model computes the free energy of the gauge theory on S 3. The conjectured F -theorem states that this quantity should decrease under renormalization group flow. We show that for a simple class of such flows, the F -theorem holds for our necklace theories. We also provide a relationship between matrix model eigenvalue distributions and numbers of chiral operators that we conjecture holds more generally. Through the AdS/CFT correspondence, there is therefore a natural dual geometric interpretation of the matrix model saddle point in terms of volumes of 7-d tri-Sasaki Einstein spaces and some of their 5-d submanifolds. As a final bonus, our analysis gives us the partition function of the T (U(N)) theory on S 3.

Keywords

AdS-CFT Correspondence Chern-Simons Theories Strong Coupling Expansion 1/N Expansion 

References

  1. [1]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, arXiv:1012.3210 [INSPIRE].
  3. [3]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [INSPIRE].
  5. [5]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    A. Amariti and M. Siani, Z-extremization and F-theorem in Chern-Simons matter theories, JHEP 10 (2011) 016 [arXiv:1105.0933] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    A. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    J.L. Cardy, Is there a c-theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].
  12. [12]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  13. [13]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and tri-Sasaki Einstein spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  18. [18]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    D.L. Jafferis and A. Tomasiello, A simple class of N = 3 gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    S. Franco, I.R. Klebanov and D. Rodriguez-Gomez, M2-branes on orbifolds of the cone over Q 1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    M. Aganagic, A stringy origin of M2 brane Chern-Simons theories, Nucl. Phys. B 835 (2010) 1 [arXiv:0905.3415] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    D.L. Jafferis, Quantum corrections to N = 2 Chern-Simons theories with flavor and their AdS 4 duals, arXiv:0911.4324 [INSPIRE].
  24. [24]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY 4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    M. Mariño and P. Putrov, Exact results in ABJM theory from topological strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    R.C. Santamaria, M. Mariño and P. Putrov, Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories, JHEP 10 (2011) 139 [arXiv:1011.6281] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Cheon, D. Gang, S. Kim and J. Park, Refined test of AdS 4 /CF T 3 correspondence for N =2, 3 theories, JHEP 05 (2011) 027 [arXiv:1102.4273] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    J.P. Gauntlett, G. Gibbons, G. Papadopoulos and P. Townsend, Hyper-Kähler manifolds and multiply intersecting branes, Nucl. Phys. B 500 (1997) 133 [hep-th/9702202] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, arXiv:0807.3720 [INSPIRE].
  31. [31]
    S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and mirror symmetry, arXiv:1105.2551 [INSPIRE].
  32. [32]
    T. Nishioka, Y. Tachikawa and M. Yamazaki, 3D partition function as overlap of wavefunctions, JHEP 08 (2011) 003 [arXiv:1105.4390] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    H.-U. Yee, AdS/CFT with tri-sasakian manifolds, Nucl. Phys. B 774 (2007) 232 [hep-th/0612002] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    A. Bergman and C.P. Herzog, The volume of some nonspherical horizons and the AdS/CFT correspondence, JHEP 01 (2002) 030 [hep-th/0108020] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys. 280 (2008) 611 [hep-th/0603021] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  36. [36]
    R. Bielawski and A.S. Dancer, The geometry and topology of toric hyperkähler manifolds, Comm. Anal. Geom. 8 (2000) 727.zbMATHMathSciNetGoogle Scholar
  37. [37]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyperkähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  38. [38]
    T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p, q)-five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  41. [41]
    M. Fujita and T.-S. Tai, Eschenburg space as gravity dual of flavored N = 4 Chern-Simons-matter theory, JHEP 09 (2009) 062 [arXiv:0906.0253] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    D. Berenstein, C.P. Herzog and I.R. Klebanov, Baryon spectra and AdS/CFT correspondence, JHEP 06 (2002) 047 [hep-th/0202150] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    E. Witten, SL(2, Z) action on three-dimensional conformal field theories with abelian symmetry, hep-th/0307041 [INSPIRE].
  46. [46]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like duality in three dimensions, arXiv:1012.4021 [INSPIRE].
  48. [48]
    D.R. Gulotta, C.P. Herzog and S.S. Pufu, Operator counting and eigenvalue distributions for 3D supersymmetric gauge theories, JHEP 11 (2011) 149 [arXiv:1106.5484] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Daniel R. Gulotta
    • 1
  • Christopher P. Herzog
    • 1
  • Silviu S. Pufu
    • 1
    Email author
  1. 1.Joseph Henry Laboratories, Princeton UniversityPrincetonUSA

Personalised recommendations