Journal of High Energy Physics

, 2011:36

Generalized holographic quantum criticality at finite density

Open Access


We show that the near-extremal solutions of Einstein-Maxwell-Dilaton theories, studied in [4], provide IR quantum critical geometries, by embedding classes of them in higher-dimensional AdS and Lifshitz solutions. This explains the scaling of their thermodynamic functions and their IR transport coefficients, the nature of their spectra, the Gubser bound, and regulates their singularities. We propose that these are the most general quantum critical IR asymptotics at finite density of EMD theories.


p-branes AdS-CFT Correspondence Black Holes Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] INSPIRE.MATHADSMathSciNetGoogle Scholar
  3. [3]
    A.M. Polyakov, String theory and quark confinement, Nucl. Phys. Proc. Suppl. 68 (1998) 1 [hep-th/9711002] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Charmousis, B. Goutéraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sens tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [INSPIRE].ADSGoogle Scholar
  8. [8]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II, JHEP 11 (2010) 123 [arXiv:1010.1364] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Gibbons, G.T. Horowitz and P. Townsend, Higher dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav. 12 (1995) 297 [hep-th/9410073] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MATHMathSciNetGoogle Scholar
  14. [14]
    E. Kiritsis and C. Kounnas, Dynamical topology change in string theory, Phys. Lett. B 331 (1994)51 [hep-th/9404092] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    E. Kiritsis, Duality symmetries and topology change in string theory, Marseille EPS HEP (1993)257 [hep-th/9309064] [INSPIRE].
  16. [16]
    A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett. 94 (2005) 241301 [hep-th/0409148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    M. Cadoni and P. Pani, Holography of charged dilatonic black branes at finite temperature, JHEP 04 (2011) 049 [arXiv:1102.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  22. [22]
    H. Chamblin and H. Reall, Dynamic dilatonic domain walls, Nucl. Phys. B 562 (1999) 133 [hep-th/9903225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    B. Goutéraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, arXiv:1110.2320 [INSPIRE].
  27. [27]
    E. Kiritsis, String theory in a nutshell, appendix E, Princeton University Press, Princeton, U.S.A. (2007).Google Scholar
  28. [28]
    K. Balasubramanian and J. McGreevy, The particle number in galilean holography, JHEP 01 (2011)137 [arXiv:1007.2184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G.T. Horowitz and A. Strominger, Black strings and p-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE]. ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    G. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE]. ADSCrossRefGoogle Scholar
  32. [32]
    C. Charmousis, B. Goutéraux and J. Soda, Einstein-Maxwell-dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [INSPIRE].ADSGoogle Scholar
  33. [33]
    K.C. Chan, J.H. Horne and R.B. Mann, Charged dilaton black holes with unusual asymptotics, Nucl. Phys. B 447 (1995) 441 [gr-qc/9502042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE]. ADSMathSciNetGoogle Scholar
  35. [35]
    R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    R.-G. Cai and A. Wang, Non-asymptotically AdS/ds solutions and their higher dimensional origins, Phys. Rev. D 70 (2004) 084042 [hep-th/0406040] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    C.J. Gao and S.N. Zhang, Dilaton black holes in de Sitter or Anti-de Sitter universe, Phys. Rev. D 70 (2004) 124019 [hep-th/0411104] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    C.J. Gao and S.N. Zhang, Higher dimensional dilaton black holes with cosmological constant, Phys. Lett. B 605 (2005) 185 [hep-th/0411105] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    A. Sheykhi, M. Dehghani and S. Hendi, Thermodynamic instability of charged dilaton black holes in AdS spaces, Phys. Rev. D 81 (2010) 084040 [arXiv:0912.4199] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Hendi, A. Sheykhi and M. Dehghani, Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity, Eur. Phys. J. C 70 (2010) 703 [arXiv:1002.0202] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Sheykhi and S. Hendi, Charged rotating dilaton black branes in AdS universe, Gen. Rel. Grav. 42 (2010) 1571 [arXiv:0911.2831] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4d AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    P.G. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    M. Cvetič, M. Duff, P. Hoxha, J.T. Liu, H. Lü, et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    A. O’Bannon, Hall conductivity of flavor fields from AdS/CFT, Phys. Rev. D 76 (2007) 086007 [arXiv:0708.1994] [INSPIRE].ADSGoogle Scholar
  48. [48]
    B.-H. Lee, D.-W. Pang and C. Park, Strange metallic behavior in anisotropic background, JHEP 07 (2010) 057 [arXiv:1006.1719] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi, et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    E. Perlmutter, Domain wall holography for finite temperature scaling solutions, JHEP 02 (2011)013 [arXiv:1006.2124] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    B. Goutéraux, E. Kiritsis, Universal IR Lifshitz asymptotics for holographic superconductors, to appear.Google Scholar
  55. [55]
    M. Cvetič, H. Lü and C. Pope, Space-times of boosted p-branes and CFT in infinite momentum frame, Nucl. Phys. B 545 (1999) 309 [hep-th/9810123] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    J. Hur, K.K. Kim and S.-J. Sin, Hydrodynamics with conserved current from the gravity dual, JHEP 03 (2009) 036 [arXiv:0809.4541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    W. Chemissany, B. Janssen and T. Van Riet, Einstein branes, JHEP 10 (2011) 002 [arXiv:1107.1427] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Bertoldi, B.A. Burrington and A. Peet, Black holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev. D 80 (2009) 126004 [arXiv:0907.4755] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    G. Bertoldi, B.A. Burrington and A.W. Peet, Thermal behavior of charged dilatonic black branes in AdS and UV completions of Lifshitz-like geometries, Phys. Rev. D 82 (2010) 106013 [arXiv:1007.1464] [INSPIRE].ADSGoogle Scholar
  63. [63]
    G. Bertoldi, B.A. Burrington, A.W. Peet and I.G. Zadeh, Lifshitz-like black brane thermodynamics in higher dimensions, Phys. Rev. D 83 (2011) 126006 [arXiv:1101.1980] [INSPIRE].ADSGoogle Scholar
  64. [64]
    J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011)017 [arXiv:1105.6335] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, arXiv:1105.1162 [INSPIRE].
  66. [66]
    N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, arXiv:1105.4621 [INSPIRE].
  67. [67]
    S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009)086006 [arXiv:0809.3402] [INSPIRE].ADSGoogle Scholar
  68. [68]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011)065029 [arXiv:0903.2477] [INSPIRE].ADSGoogle Scholar
  69. [69]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Cadoni, S. Mignemi and M. Serra, Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field, Phys. Rev. D 84 (2011) 084046 [arXiv:1107.5979] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  72. [72]
    Y. Liu and Y.-W. Sun, Holographic superconductors from Einstein-Maxwell-dilaton gravity, JHEP 07 (2010) 099 [arXiv:1006.2726] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Université Paris Diderot, Sorbonne Paris Cité, APC, UMRParisFrance
  2. 2.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations