Advertisement

Journal of High Energy Physics

, 2011:31 | Cite as

On instantons as Kaluza-Klein modes of M5-branes

  • Hee-Cheol Kim
  • Seok KimEmail author
  • Eunkyung Koh
  • Kimyeong Lee
  • Sungjay Lee
Article

Abstract

Instantons and W-bosons in 5d maximally supersymmetric Yang-Mills theory arise from a circle compactification of the 6d (2,0) theory as Kaluza-Klein modes and winding self-dual strings, respectively. We study an index which counts BPS instantons with electric charges in Coulomb and symmetric phases. We first prove the existence of unique threshold bound state of (noncommutative) U(1) instantons for any instanton number, and also show that charged instantons in the Coulomb phase correctly give the degeneracy of SU(2) self-dual strings. By studying SU(N) self-dual strings in the Coulomb phase, we find novel momentum-carrying degrees on the worldsheet. The total number of these degrees equals the anomaly coefficient of SU(N) (2,0) theory. We finally show that our index can be used to study the symmetric phase of this theory, and provide an interpretation as the superconformal index of the sigma model on instanton moduli space.

Keywords

Supersymmetric gauge theory Duality in Gauge Field Theories Solitons Monopoles and Instantons M-Theory 

References

  1. [1]
    C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  6. [6]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) Tensor Multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    N. Lambert and P. Richmond, (2, 0) Supersymmetry and the Light-Cone Description of M5-branes, arXiv:1109.6454 [INSPIRE].
  10. [10]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    P.S. Howe, N. Lambert and P.C. West, The Selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    P. Arvidsson, E. Flink and M. Henningson, Thomson scattering of chiral tensors and scalars against a selfdual string, JHEP 12 (2002) 010 [hep-th/0210223] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    P. Arvidsson, E. Flink and M. Henningson, Free tensor multiplets and strings in spontaneously broken six-dimensional (2, 0) theory, JHEP 06 (2003) 039 [hep-th/0306145] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    P. Arvidsson, E. Flink and M. Henningson, Supersymmetric coupling of a selfdual string to a (2, 0) tensor multiplet background, JHEP 11 (2003) 015 [hep-th/0309244] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    P. Arvidsson, E. Flink and M. Henningson, The (2, 0) supersymmetric theory of tensor multiplets and selfdual strings in six-dimensions, JHEP 05 (2004) 048 [hep-th/0402187] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    M. Henningson, Self-dual strings in six dimensions: Anomalies, the ADE-classification and the world-sheet WZW-model, Commun. Math. Phys. 257 (2005) 291 [hep-th/0405056] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  17. [17]
    D.S. Berman and J.A. Harvey, The Self-dual string and anomalies in the M5-brane, JHEP 11 (2004) 015 [hep-th/0408198] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    D.S. Berman, M-theory branes and their interactions, Phys. Rept. 456 (2008) 89 [arXiv:0710.1707] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    Y. Tachikawa, On S-duality of 5d super Yang-Mills on S 1, JHEP 11 (2011) 123 [arXiv:1110.0531] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  21. [21]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  22. [22]
    R. Gopakumar and C. Vafa, M theory and topological strings. 1., hep-th/9809187 [INSPIRE].
  23. [23]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE].
  24. [24]
    S. Sethi and M. Stern, A Comment on the spectrum of H monopoles, Phys. Lett. B 398 (1997) 47 [hep-th/9607145] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    S. Sethi and M. Stern, Invariance theorems for supersymmetric Yang-Mills theories, Adv. Theor. Math. Phys. 4 (2000) 487 [hep-th/0001189] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  26. [26]
    S. Sethi and M. Stern, The Structure of the D0-D4 bound state, Nucl. Phys. B 578 (2000) 163 [hep-th/0002131] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    N.D. Lambert and D. Tong, Dyonic instantons in five-dimensional gauge theories, Phys. Lett. B 462 (1999) 89 [hep-th/9907014] [INSPIRE].ADSGoogle Scholar
  28. [28]
    T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, arXiv:1004.1222 [INSPIRE].
  29. [29]
    N. Nekrasov and A.S. Schwarz, Instantons on noncommutative R 4 and (2, 0) superconformal six-dimensional theory, Commun. Math. Phys. 198 (1998) 689 [hep-th/9802068] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  30. [30]
    K.-M. Lee, E.J. Weinberg and P. Yi, Electromagnetic duality and SU(3) monopoles, Phys. Lett. B 376 (1996) 97 [hep-th/9601097] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    P. Yi, Duality, multi-monopole dynamics and quantum threshold bound states, hep-th/9608114 [INSPIRE].
  32. [32]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    S. Bolognesi and K. Lee, 1/4 BPS String Junctions and N 3 Problem in 6-dim (2, 0) Superconformal Theories, arXiv:1105.5073 [INSPIRE].
  35. [35]
    P. Yi, Witten index and threshold bound states of D-branes, Nucl. Phys. B 505 (1997) 307 [hep-th/9704098] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    S. Sethi and M. Stern, D-brane bound states redux, Commun. Math. Phys. 194 (1998) 675 [hep-th/9705046] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  37. [37]
    G.W. Moore, N. Nekrasov and S. Shatashvili, D particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  38. [38]
    N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The Calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  39. [39]
    S. Kim, K.-M. Lee and S. Lee, Dyonic Instantons in 5-dim Yang-Mills Chern-Simons Theories, JHEP 08 (2008) 064 [arXiv:0804.1207] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  41. [41]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    T.J. Hollowood, A. Iqbal and C. Vafa, Matrix models, geometric engineering and elliptic genera, JHEP 03 (2008) 069 [hep-th/0310272] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    K.-M. Lee, D. Tong and S. Yi, The Moduli space of two U(1) instantons on noncommutative R 4 and R 3 × S 1, Phys. Rev. D 63 (2001) 065017 [hep-th/0008092] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    N. Dorey, T.J. Hollowood and V.V. Khoze, The D instanton partition function, JHEP 03 (2001) 040 [hep-th/0011247] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    A. Iqbal, C. Kozcaz and K. Shabbir, Refined Topological Vertex, Cylindric Partitions and the U(1) Adjoint Theory, Nucl. Phys. B 838 (2010) 422 [arXiv:0803.2260] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    H. Awata and H. Kanno, Refined BPS state counting from Nekrasov’s formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    R. Poghossian and M. Samsonyan, Instantons and the 5D U(1) gauge theory with extra adjoint, J. Phys. A 42 (2009) 304024 [arXiv:0804.3564] [INSPIRE].MathSciNetGoogle Scholar
  48. [48]
    C.-j. Kim, K.-M. Lee and P. Yi, DLCQ of fivebranes, large-N screening and L 2 harmonic forms on Calabi manifolds, Phys. Rev. D 65 (2002) 065024 [hep-th/0109217] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    A. Sen, Dyon-monopole bound states, selfdual harmonic forms on the multi-monopole moduli space and SL(2, \( \mathbb{Z} \)) invariance in string theory, Phys. Lett. B 329 (1994) 217 [hep-th/9402032] [INSPIRE].ADSGoogle Scholar
  50. [50]
    B. Collie and D. Tong, The Partonic Nature of Instantons, JHEP 08 (2009) 006 [arXiv:0905.2267] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    E. Witten, On the conformal field theory of the Higgs branch, JHEP 07 (1997) 003 [hep-th/9707093] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    O. Ganor and L. Motl, Equations of the (2, 0) theory and knitted five-branes, JHEP 05 (1998) 009 [hep-th/9803108] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  59. [59]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    F. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  61. [61]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  62. [62]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  63. [63]
    S. Bolognesi and K. Lee, Instanton Partons in 5-dim SU(N) Gauge Theory, Phys. Rev. D 84 (2011) 106001 [arXiv:1106.3664] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Hee-Cheol Kim
    • 1
    • 2
  • Seok Kim
    • 1
    Email author
  • Eunkyung Koh
    • 2
  • Kimyeong Lee
    • 2
  • Sungjay Lee
    • 3
  1. 1.Department of Physics and Astronomy & Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  3. 3.DAMTP, Centre for Mathematical SciencesCambridge UniversityCambridgeUnited Kingdom

Personalised recommendations