Journal of High Energy Physics

, 2011:18 | Cite as

On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem

  • Ph. Boucaud
  • D. Dudal
  • J. P. Leroy
  • O. Pène
  • J. Rodríguez-Quintero
Open Access
Article

Abstract

This brief note is devoted to a study of genuine non-perturbative corrections to the Landau gauge ghost-gluon vertex in terms of the non-vanishing dimension-two gluon condensate. We prove these corrections to give account of current SU(2) lattice data for the vertex with different kinematical configurations in the domain of intermediate momenta, roughly above 2-3 GeV. We pay special attention to the kinematical limit which the bare vertex takes for its tree-level expression at any perturbative order, according to the well-known Taylor theorem. Based on our OPE analysis, we also present a simple model for the vertex, in acceptable agreement with the lattice data also in the IR domain.

Keywords

Nonperturbative Effects Sum Rules QCD Lattice QCD 

References

  1. [1]
    A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601 [arXiv:0712.3517] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    A. Cucchieri and T. Mendes, Constraints on the IR behavior of the ghost propagator in Yang-Mills theories, Phys. Rev. D 78 (2008) 094503 [arXiv:0804.2371] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang-Mills theories at β = 0: massive solution versus conformal scaling, Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Costa, O. Oliveira and P. Silva, What does low energy physics tell us about the zero momentum gluon propagator, Phys. Lett. B 695 (2011) 454 [arXiv:1011.5603] [INSPIRE].ADSGoogle Scholar
  5. [5]
    O. Oliveira and P. Bicudo, Running gluon mass from Landau gauge lattice QCD propagator, J. Phys. G 38 (2011) 045003 [arXiv:1002.4151] [INSPIRE].ADSGoogle Scholar
  6. [6]
    I. Bogolubsky, V. Bornyakov, G. Burgio, E. Ilgenfritz, M. Muller-Preussker, et al., Improved Landau gauge fixing and the suppression of finite-volume effects of the lattice gluon propagator, Phys. Rev. D 77 (2008) 014504 [Erratum ibid. D 77 (2008) 039902] [arXiv:0707.3611] [INSPIRE].
  7. [7]
    I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736] [INSPIRE].ADSGoogle Scholar
  8. [8]
    V. Bornyakov, V. Mitrjushkin and M. Muller-Preussker, SU(2) lattice gluon propagator: continuum limit, finite-volume effects and infrared mass scale m IR, Phys. Rev. D 81 (2010) 054503 [arXiv:0912.4475] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Binosi and J. Papavassiliou, Pinch technique: theory and applications, Phys. Rept. 479 (2009) 1 [arXiv:0909.2536] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    P. Boucaud, J. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, et al., On the IR behaviour of the Landau-gauge ghost propagator, JHEP 06 (2008) 099 [arXiv:0803.2161] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    P. Boucaud, J.-P. Leroy, A. Yaouanc, J. Micheli, O. Pène, et al., IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation, JHEP 06 (2008) 012 [arXiv:0801.2721] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    P. Boucaud, M. Gomez, J. Leroy, A. Le Yaouanc, J. Micheli, et al., The low-momentum ghost dressing function and the gluon mass, Phys. Rev. D 82 (2010) 054007 [arXiv:1004.4135] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Rodr´ıguez-Quintero, On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions, JHEP 01 (2011) 105 [arXiv:1005.4598] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    C.S. Fischer, A. Maas and J.M. Pawlowski, On the infrared behavior of Landau gauge Yang-Mills theory, Annals Phys. 324 (2009) 2408 [arXiv:0810.1987] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  16. [16]
    C.S. Fischer and J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II, Phys. Rev. D 80 (2009) 025023 [arXiv:0903.2193] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    R. Alkofer, M.Q. Huber and K. Schwenzer, Infrared singularities in Landau gauge Yang-Mills theory, Phys. Rev. D 81 (2010) 105010 [arXiv:0801.2762] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Dudal, R. Sobreiro, S. Sorella and H. Verschelde, The Gribov parameter and the dimension two gluon condensate in Euclidean Yang-Mills theories in the Landau gauge, Phys. Rev. D 72 (2005) 014016 [hep-th/0502183] [INSPIRE].ADSGoogle Scholar
  19. [19]
    D. Dudal, S. Sorella, N. Vandersickel and H. Verschelde, New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach, Phys. Rev. D 77 (2008) 071501 [arXiv:0711.4496] [INSPIRE].ADSGoogle Scholar
  20. [20]
    D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [INSPIRE].ADSGoogle Scholar
  21. [21]
    D. Dudal, O. Oliveira and N. Vandersickel, Indirect lattice evidence for the refined Gribov-Zwanziger formalism and the gluon condensateA 2in the Landau gauge, Phys. Rev. D 81 (2010) 074505 [arXiv:1002.2374] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Tissier and N. Wschebor, Infrared propagators of Yang-Mills theory from perturbation theory, Phys. Rev. D 82 (2010) 101701 [arXiv:1004.1607] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Tissier and N. Wschebor, An infrared safe perturbative approach to Yang-Mills correlators, Phys. Rev. D 84 (2011) 045018 [arXiv:1105.2475] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Pennington and D. Wilson, Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD?, arXiv:1109.2117 [INSPIRE].
  25. [25]
    J. Taylor, Ward identities and charge renormalization of the Yang-Mills field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    P. Boucaud, F. De Soto, J. Leroy, A. Le Yaouanc, J. Micheli, et al., Ghost-gluon running coupling, power corrections and the determination of Λ\( _{{M\overline S }} \), Phys. Rev. D 79 (2009) 014508 [arXiv:0811.2059] [INSPIRE].ADSGoogle Scholar
  27. [27]
    ETM collaboration, B. Blossier et al., Ghost-gluon coupling, power corrections and Λ\( _{{\overline {\text{MS}} }} \) from twisted-mass lattice QCD at N f = 2, Phys. Rev. D 82 (2010) 034510 [arXiv:1005.5290] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Sternbeck, E.-M. Ilgenfritz, K. Maltman, M. Muller-Preussker, L. von Smekal, et al., QCD λ parameter from Landau-gauge gluon and ghost correlations, PoS LAT2009 (2009) 210 [arXiv:1003.1585] [INSPIRE].
  29. [29]
    A. Aguilar, D. Binosi, J. Papavassiliou and J. Rodríguez-Quintero, Non-perturbative comparison of QCD effective charges, Phys. Rev. D 80 (2009) 085018 [arXiv:0906.2633] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Boucaud, J. Leroy, A. Yaouanc, J. Micheli, O. Pène, et al., The infrared behaviour of the pure Yang-Mills Green functions, arXiv:1109.1936 [INSPIRE].
  31. [31]
    J. Rodríguez-Quintero, On the gluon condensat, the ghost-gluon vertex and the Taylor theorem, Proceedings of TNT-2011, September 5-9, Trento Italy (2011).Google Scholar
  32. [32]
    D. Dudal, Ghost dissection, Proceedings of TNT-2011, September 5-9, Trento Italy (2011).Google Scholar
  33. [33]
    B. Alles, D. Henty, H. Panagopoulos, C. Parrinello, C. Pittori, et al., αs from the nonperturbatively renormalised lattice three gluon vertex, Nucl. Phys. B 502 (1997) 325 [hep-lat/9605033] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    D. Becirevic, P. Boucaud, J. Leroy, J. Micheli, O. Pène, et al., Asymptotic behavior of the gluon propagator from lattice QCD, Phys. Rev. D 60 (1999) 094509 [hep-ph/9903364] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Becirevic, P. Boucaud, J. Leroy, J. Micheli, O. Pène, et al., Asymptotic scaling of the gluon propagator on the lattice, Phys. Rev. D 61 (2000) 114508 [hep-ph/9910204] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P. Boucaud, G. Burgio, F. Di Renzo, J. Leroy, J. Micheli, et al., Lattice calculation of 1/p 2 corrections to α s and of ΛQCD in the MOM scheme, JHEP 04 (2000) 006 [hep-ph/0003020] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    P. Boucaud, A. Le Yaouanc, J. Leroy, J. Micheli, O. Pène, et al., Consistent OPE description of gluon two point and three point Green function?, Phys. Lett. B 493 (2000) 315 [hep-ph/0008043] [INSPIRE].ADSGoogle Scholar
  38. [38]
    P. Boucaud, J. Leroy, H. Moutarde, J. Micheli, O. Pène, et al., Preliminary calculation of αs from Green functions with dynamical quarks, JHEP 01 (2002) 046 [hep-ph/0107278] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    P. Boucaud, A. Le Yaouanc, J. Leroy, J. Micheli, O. Pène, et al., Testing Landau gauge OPE on the lattice with aA 2condensate, Phys. Rev. D 63 (2001) 114003 [hep-ph/0101302] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. De Soto and J. Rodríguez-Quintero, Notes on the determination of the Landau gauge OPE for the asymmetric three gluon vertex, Phys. Rev. D 64 (2001) 114003 [hep-ph/0105063] [INSPIRE].ADSGoogle Scholar
  41. [41]
    P. Boucaud, J. Leroy, A. Le Yaouanc, A. Lokhov, J. Micheli, et al., Non-perturbative power corrections to ghost and gluon propagators, JHEP 01 (2006) 037 [hep-lat/0507005] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    F.D. Bonnet, P.O. Bowman, D.B. Leinweber, A.G. Williams and J.M. Zanotti, Infinite volume and continuum limits of the Landau gauge gluon propagator, Phys. Rev. D 64 (2001) 034501 [hep-lat/0101013] [INSPIRE].ADSGoogle Scholar
  43. [43]
    F.D. Bonnet, P.O. Bowman, D.B. Leinweber and A.G. Williams, Infrared behavior of the gluon propagator on a large volume lattice, Phys. Rev. D 62 (2000) 051501 [hep-lat/0002020] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A.G. Williams, P. Bowman, F. Bonnet, D. Leinweber, and J. Skullerud, Gluon and quark propagators in Landau gauge from the lattice, proceedings of the Workshop on Lightcone QCD and Nonperturbative Hadron Physics, December 13-22 1999, Adelaide Australia, A.W. Schreiber and A.G. Williams eds., World Scientific, Singapore (1999).Google Scholar
  45. [45]
    A. Cucchieri, A. Maas and T. Mendes, Three-point vertices in Landau-gauge Yang-Mills theory, Phys. Rev. D 77 (2008) 094510 [arXiv:0803.1798] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Sternbeck, E.-M. Ilgenfritz, M. Muller-Preussker and A. Schiller, Landau gauge ghost and gluon propagators and the Faddeev-Popov operator spectrum, Nucl. Phys. Proc. Suppl. 153 (2006) 185 [hep-lat/0511053] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    K. Chetyrkin and A. Retey, Three loop three linear vertices and four loop similar to MOM β-functions in massless QCD, hep-ph/0007088 [INSPIRE].
  48. [48]
    A.I. Davydychev, P. Osland and O. Tarasov, Three gluon vertex in arbitrary gauge and dimension, Phys. Rev. D 54 (1996) 4087 [Erratum ibid. D 59 (1999) 109901] [hep-ph/9605348] [INSPIRE].
  49. [49]
    B. Blossier, P. Boucaud, M. Brinet, F. De Soto, Z. Liu, et al., Renormalisation of quark propagators from twisted-mass lattice QCD at N f =2, Phys. Rev. D 83 (2011) 074506 [arXiv:1011.2414] [INSPIRE].ADSGoogle Scholar
  50. [50]
    W. Schleifenbaum, A. Maas, J. Wambach and R. Alkofer, Infrared behaviour of the ghost-gluon vertex in Landau gauge Yang-Mills theory, Phys. Rev. D 72 (2005) 014017 [hep-ph/0411052] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Ph. Boucaud
    • 1
  • D. Dudal
    • 2
  • J. P. Leroy
    • 1
  • O. Pène
    • 1
  • J. Rodríguez-Quintero
    • 3
  1. 1.Laboratoire de Physique ThéoriqueUniversité de Paris XIOrsay CedexFrance
  2. 2.Department of Physics and AstronomyGhent UniversityGentBelgium
  3. 3.Dpto. Fisica Aplicada, Fac. Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain

Personalised recommendations