Journal of High Energy Physics

, 2011:14 | Cite as

On BPS bounds in D = 4 N = 2 gauged supergravity

  • Kiril HristovEmail author
  • Chiara Toldo
  • Stefan Vandoren
Open Access


We determine the BPS bounds in minimal gauged supergravity in four space- time dimensions. We concentrate on asymptotically anti-de Sitter (AdS) spacetimes, and find that there exist two disconnected BPS ground states of the theory, depending on the presence of magnetic charge. Each of these ground states comes with a different superal-gebra and a different BPS bound, which we derive. As a byproduct, we also demonstrate how the supersymmetry algebra has a built-in holographic renormalization method to define finite conserved charges.


Supergravity Models Global Symmetries 


  1. [1]
    V. Kostelecky and M.J. Perry, Solitonic black holes in gauged N = 2 supergravity, Phys. Lett. B 371 (1996) 191 [hep-th/9512222] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    R. Kallosh, A.D. Linde, T. Ort´ın, A.W. Peet and A. Van Proeyen, Supersymmetry as a cosmic censor, Phys. Rev. D 46 (1992) 5278 [hep-th/9205027] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T. Hertog, G.T. Horowitz and K. Maeda, Update on cosmic censorship violation in AdS, gr-qc/0405050 [INSPIRE].
  5. [5]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    J.M. Izquierdo, P. Meessen and T. Ortín, Bogomol’nyi bounds in AdS, unpublished (1999).Google Scholar
  9. [9]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  11. [11]
    K. Hristov, H. Looyestijn and S. Vandoren, Maximally supersymmetric solutions of D = 4 N =2 gauged supergravity, JHEP 11(2009) 115 [arXiv:0909.1743][INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    S. Barisch, G.L. Cardoso, M. Haack, S. Nampuri and N.A. Obers, Nernst branes in gauged supergravity, JHEP 11 (2011) 090 [arXiv:1108.0296] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].ADSGoogle Scholar
  15. [15]
    N. Alonso-Alberca, P. Meessen and T. Ortín, Supersymmetry of topological Kerr-Newman-Taub-NUT-AdS space-times, Class. Quant. Grav. 17 (2000) 2783 [hep-th/0003071] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  16. [16]
    E. Witten, A simple proof of the positive energy theorem, Commun. Math. Phys. 80 (1981) 381 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    J.A. Nester, A new gravitational energy expression with a simple positivity proof, Phys. Lett. A 83 (1981) 241.ADSMathSciNetGoogle Scholar
  18. [18]
    R. Argurio, F. Dehouck and L. Houart, Supersymmetry and gravitational duality, Phys. Rev. D 79 (2009) 125001 [arXiv:0810.4999] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    E. Sezgin and Y. Tanii, Witten-Nester energy in topologically massive gravity, Class. Quant. Grav. 26 (2009) 235005 [arXiv:0903.3779] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    M.C. Cheng and K. Skenderis, Positivity of energy for asymptotically locally AdS spacetimes, JHEP 08 (2005) 107 [hep-th/0506123] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    J.P. Gauntlett, G.W. Gibbons, C.M. Hull and P.K. Townsend, BPS states of D = 4 N = 1 supersymmetry, Commun. Math. Phys. 216 (2001) 431 [hep-th/0001024] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. [22]
    M. Henneaux and C. Teitelboim, Asymptotically Anti-de Sitter spaces, Commun. Math. Phys. 98 (1985) 391 [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  23. [23]
    G. Dibitetto and D. Klemm, Magnetic charges in the AdS 4 superalgebra OSp(4|2), JHEP 12 (2010) 005 [arXiv:1005.4334] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    J.M. Figueroa-O’Farrill, On the supersymmetries of Anti-de Sitter vacua, Class. Quant. Grav. 16 (1999) 2043 [hep-th/9902066] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. [26]
    T. Ortin, Gravity and strings, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  27. [27]
    B. de Wit and M. van Zalk, Electric and magnetic charges in N = 2 conformal supergravity theories, arXiv:1107.3305 [INSPIRE].
  28. [28]
    L. Abbott and S. Deser, Stability of gravity with a cosmological constant, Nucl. Phys. B 195 (1982) 76 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    G. Compere, K. Murata and T. Nishioka, Central charges in extreme black hole/CFT correspondence, JHEP 05 (2009) 077 [arXiv:0902.1001] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.Faculty of PhysicsSofia UniversitySofiaBulgaria

Personalised recommendations