Journal of High Energy Physics

, 2011:10 | Cite as

Scalar field propagation in the ϕ 4 κ-Minkowski model

  • S. Meljanac
  • A. Samsarov
  • J. Trampetić
  • M. Wohlgenannt


In this article we use the noncommutative (NC) κ-Minkowski ϕ 4 model based on the κ-deformed star product, (★ h ). The action is modified by expanding up to linear order in the κ-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the κ-Minkowski is specifically κ-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the κ-deformed Minkowski spacetime, resulting in a κ-effective model. The propagation is analyzed in the framework of the two-point Green’s function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the κ-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planck-ian energies we obtain the direction dependent κ-modified dispersion relations. Thus our κ-effective model for the massive scalar field shows a birefringence effect.


Non-Commutative Geometry Field Theories in Higher Dimensions Renormalization Regularization and Renormalons 


  1. [1]
    J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaré algebra, Phys. Lett. B 264 (1991) 331 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincaré algebra and k deformed field theory, Phys. Lett. B 293 (1992) 344 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    S. Majid and H. Ruegg, Bicrossproduct structure of kappa Poincaré group and noncommutative geometry, Phys. Lett. B 334 (1994) 348 [hep-th/9405107] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    T. Govindarajan, K.S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Deformed Oscillator Algebras and QFT in κ-Minkowski Spacetime, Phys. Rev. D 80 (2009) 025014 [arXiv:0903.2355] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Young and R. Zegers, Covariant particle statistics and intertwiners of the κ-deformed Poincaré algebra, Nucl. Phys. B 797 (2008) 537 [arXiv:0711.2206] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    M. Arzano and A. Marciano, Fock space, quantum fields and κ-Poincaré symmetries, Phys. Rev. D 76 (2007) 125005 [arXiv:0707.1329] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    M. Daszkiewicz, J. Lukierski and M. Woronowicz, Towards quantum noncommutative κ-deformed field theory, Phys. Rev. D 77 (2008) 105007 [arXiv:0708.1561] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    V. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985)1060 [Sov. Math. Dokl. 32 (1985) 254] [INSPIRE].MathSciNetGoogle Scholar
  9. [9]
    V.G. Drinfel’d, Quasi-Hopf algebras, Algebra i Analiz 1 (1989) 114 [Leningrad Math. J. 1 (1990)1419.Google Scholar
  10. [10]
    A. Borowiec, J. Lukierski and V. Tolstoy, Jordanian quantum deformations of D = 4 Anti-de-Sitter and Poincaré superalgebras, Eur. Phys. J. C 44 (2005) 139 [hep-th/0412131] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    A. Borowiec, J. Lukierski and V. Tolstoy, Jordanian twist quantization of D = 4 Lorentz and Poincaré algebras and D = 3 contraction limit, Eur. Phys. J. C 48 (2006) 633 [hep-th/0604146] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    A. Balachandran, A. Pinzul and B. Qureshi, Twisted Poincaré Invariant Quantum Field Theories, Phys. Rev. D 77 (2008) 025021 [arXiv:0708.1779] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    J.-G. Bu, H.-C. Kim, Y. Lee, C.H. Vac and J.H. Yee, κ-deformed Spacetime From Twist, Phys. Lett. B 665 (2008) 95 [hep-th/0611175] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    T. Govindarajan, K.S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Twisted statistics in κ-Minkowski spacetime, Phys. Rev. D 77 (2008) 105010 [arXiv:0802.1576] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    A. Borowiec and A. Pachol, κ-Minkowski spacetime as the result of Jordanian twist deformation, Phys. Rev. D 79 (2009) 045012 [arXiv:0812.0576] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.-G. Bu, J.H. Yee and H.-C. Kim, Differential Structure on κ-Minkowski Spacetime Realized as Module of Twisted Weyl Algebra, Phys. Lett. B 679 (2009) 486 [arXiv:0903.0040] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    L. Freidel, J. Kowalski-Glikman and S. Nowak, From noncommutative κ-Minkowski to Minkowski space-time, Phys. Lett. B 648 (2007) 70 [hep-th/0612170] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    J. Kowalski-Glikman and A. Walkus, Star product and interacting fields on κ-Minkowski space, Mod. Phys. Lett. A 24 (2009) 2243 [arXiv:0904.4036] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    P. Kosinski, J. Lukierski, P. Maslanka and J. Sobczyk, The Classical basis for κ deformed Poincaré (super)algebra and the second κ deformed supersymmetric Casimir, Mod. Phys. Lett. A 10 (1995) 2599 [hep-th/9412114] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    A. Borowiec and A. Pachol, Classical basis for κ-Poincaré algebra and doubly special relativity theories, J. Phys. A 43 (2010) 045203 [arXiv:0903.5251] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    S. Meljanac and M. Stojic, New realizations of Lie algebra κ-deformed Euclidean space, Eur. Phys. J. C 47 (2006) 531 [hep-th/0605133] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    S. Meljanac, A. Samsarov, M. Stojic and K. Gupta, κ-Minkowski space-time and the star product realizations, Eur. Phys. J. C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    S. Kresic-Juric, S. Meljanac and M. Stojic, Covariant realizations of κ-deformed space, Eur. Phys. J. C 51 (2007) 229 [hep-th/0702215] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    S. Meljanac and A. Samsarov, Scalar field theory on κ-Minkowski spacetime and translation and Lorentz invariance, Int. J. Mod. Phys. A 26 (2011) 1439 [arXiv:1007.3943] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    H. Grosse and M. Wohlgenannt, On κ-deformation and UV/IR mixing, Nucl. Phys. B 748 (2006) 473 [hep-th/0507030] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    R. Horvat and J. Trampetic, Constraining noncommutative field theories with holography, JHEP 01 (2011) 112 [arXiv:1009.2933] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Effective field theory, black holes and the cosmological constant, Phys. Rev. Lett. 82 (1999) 4971 [hep-th/9803132] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  28. [28]
    R. Horvat, D. Kekez, P. Schupp, J. Trampetic and J. You, Photon-neutrino interaction in theta-exact covariant noncommutative field theory, Phys. Rev. D 84 (2011) 045004 [arXiv:1103.3383] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Horvat, A. Ilakovac, J. Trampetic and J. You, On UV/IR mixing in noncommutative gauge field theories, accepted for publication in JHEP, arXiv:1109.2485 [INSPIRE].
  30. [30]
    R.J. Szabo, Quantum Gravity, Field Theory and Signatures of Noncommutative Spacetime, Gen. Rel. Grav. 42 (2010) 1 [arXiv:0906.2913] [INSPIRE].CrossRefMATHADSGoogle Scholar
  31. [31]
    P. Kosinski, J. Lukierski and P. Maslanka, Local D = 4 field theory on kappa deformed Minkowski space, Phys. Rev. D 62 (2000) 025004 [hep-th/9902037] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    G. Amelino-Camelia and M. Arzano, Coproduct and star product in field theories on Lie algebra noncommutative space-times, Phys. Rev. D 65 (2002) 084044 [hep-th/0105120] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    M. Maggiore, A Generalized uncertainty principle in quantum gravity, Phys. Lett. B 304 (1993) 65 [hep-th/9301067] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Kowalski-Glikman and S. Nowak, Doubly special relativity theories as different bases of kappa Poincaré algebra, Phys. Lett. B 539 (2002) 126 [hep-th/0203040] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    J. Kowalski-Glikman and S. Nowak, Noncommutative space-time of doubly special relativity theories, Int. J. Mod. Phys. D 12 (2003) 299 [hep-th/0204245] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess and M. Wohlgenannt, Deformed field theory on kappa space-time, Eur. Phys. J. C 31 (2003) 129 [hep-th/0307149] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Borowiec and A. Pachol, κ-Minkowski spacetimes and DSR algebras: Fresh look and old problems, SIGMA 6 (2010) 086 [arXiv:1005.4429] [INSPIRE].MathSciNetGoogle Scholar
  39. [39]
    S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge U.K. (1995).CrossRefMATHGoogle Scholar
  40. [40]
    A. Balachandran, T. Govindarajan, G. Mangano, A. Pinzul, B. Qureshi and S. Vaidya, Statistics and UV-IR mixing with twisted Poincaré invariance, Phys. Rev. D 75 (2007) 045009 [hep-th/0608179] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Balachandran, A. Joseph and P. Padmanabhan, Non-Pauli Transitions From Spacetime Noncommutativity, Phys. Rev. Lett. 105 (2010) 051601 [arXiv:1003.2250] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    A. Balachandran and P. Padmanabhan, Non-Pauli Effects from Noncommutative Spacetimes, JHEP 12 (2010) 001 [arXiv:1006.1185] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    V.G. Drinfeld, Quantum groups, Proceedings of the ICM, Berkeley U.S.A. (1986), American Mathematical Society, Rhode Island U.S.A. (1987).Google Scholar
  44. [44]
    L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra i Analiz. 1 (1989) 178 [Leningrad Math. J. 1 (1990) 193].Google Scholar
  45. [45]
    S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Int. J. Mod. Phys. A 5 (1990) 1 [INSPIRE].
  46. [46]
    J. Kowalski-Glikman, de Sitter space as an arena for doubly special relativity, Phys. Lett. B 547 (2002) 291 [hep-th/0207279] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    J. Lukierski and A. Nowicki, Nonlinear and quantum origin of doubly infinite family of modified addition laws for four momenta, Czech. J. Phys. 52 (2002) 1261 [hep-th/0209017] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  48. [48]
    P. Kosinski, J. Lukierski and P. Maslanka, Local field theory on kappa Minkowski space, star products and noncommutative translations, Czech. J. Phys. 50 (2000) 1283 [hep-th/0009120] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  49. [49]
    A. Agostini, G. Amelino-Camelia, M. Arzano, A. Marciano and R.A. Tacchi, Generalizing the Noether theorem for Hopf-algebra spacetime symmetries, Mod. Phys. Lett. A 22 (2007) 1779 [hep-th/0607221] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    P. Kosinski, P. Maslanka, J. Lukierski and A. Sitarz, Generalized kappa deformations and deformed relativistic scalar fields on noncommutative Minkowski space, in the proceedings of Topics in mathematical physics, general relativity and cosmology, Mexico City Mexico (2002), World Scientific, Singapore (2003) [hep-th/0307038] [INSPIRE].Google Scholar
  51. [51]
    Roberto Casalbuoni, Advanced Quantum Field Theory, lezioni date all’Universita’ di Firenze, Dipartimento di Fisica, Firence Italy (2004/2005).Google Scholar
  52. [52]
    S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Vacuum Birefringence as a Probe of Planck Scale Noncommutativity, JHEP 09 (2006) 074 [hep-ph/0607188] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    M. Burić, D. Latas, V. Radovanović and J. Trampetic, Chiral fermions in noncommutative electrodynamics: Renormalizability and dispersion, Phys. Rev. D 83 (2011) 045023 [arXiv:1009.4603] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • S. Meljanac
    • 1
  • A. Samsarov
    • 1
  • J. Trampetić
    • 1
    • 2
  • M. Wohlgenannt
    • 3
  1. 1.Rudjer Bošković InstituteZagrebCroatia
  2. 2.Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut)MünchenGermany
  3. 3.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations