Non-standard antineutrino interactions at Daya Bay

  • Rupert Leitner
  • Michal MalinskýEmail author
  • Bedřich Roskovec
  • He Zhang


We study the prospects of pinning down the effects of non-standard antineutrino interactions in the source and in the detector at the Daya Bay neutrino facility. It is well known that if the non-standard interactions in the detection process are of the same type as those in the production, their net effect can be subsumed into a mere shift in the measured value of the leptonic mixing angle θ 13. Relaxing this assumption, the ratio of the antineutrino spectra measured by the Daya Bay far and near detectors is distorted in a characteristic way, and good fits based on the standard oscillation hypothesis are no longer viable. We show that, under certain conditions, three years of Daya Bay running can be sufficient to provide a clear hint of non-standard neutrino physics.


Neutrino Physics Beyond Standard Model 


  1. [1]
    MINOS collaboration, P. Adamson et al., First direct observation of muon antineutrino disappearance, Phys. Rev. Lett. 107 (2011) 021801 [arXiv:1104.0344] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    The MiniBooNE collaboration, A. Aguilar-Arevalo et al., Event Excess in the MiniBooNE Search for \( {\overline \nu_\mu } \to {\overline \nu_e} \) Oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    LSND collaboration, A. Aguilar et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    R. Foot, H. Lew, X. He and G.C. Joshi, See-saw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  6. [6]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D. Freedman eds., Stony Brook, New York U.S.A. (1979), pg. 315.Google Scholar
  7. [7]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  9. [9]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proc. Workshop on the Baryon Number of the Universe and Unified Theories, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95.Google Scholar
  13. [13]
    T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].ADSGoogle Scholar
  16. [16]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    MINOS collaboration, P. Adamson et al., Improved Search for Muon-Neutrino to Electron-Neutrino Oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    Daya-Bay collaboration, X. Guo et al., A Precision measurement of the neutrino mixing angle θ 13 using reactor antineutrinos at Daya-Bay, hep-ex/0701029 [INSPIRE].
  19. [19]
    Double CHOOZ collaboration, F. Ardellier et al., Double CHOOZ: A Search for the neutrino mixing angle θ 13, hep-ex/0606025 [INSPIRE].
  20. [20]
    RENO collaboration, S.-B. Kim, RENO for neutrino mixing angle θ 13, Prog. Part. Nucl. Phys. 64 (2010) 346 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Ohlsson and H. Zhang, Non-Standard Interaction Effects at Reactor Neutrino Experiments, Phys. Lett. B 671 (2009) 99 [arXiv:0809.4835] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P. Huber, T. Schwetz and J. Valle, Confusing nonstandard neutrino interactions with oscillations at a neutrino factory, Phys. Rev. D 66 (2002) 013006 [hep-ph/0202048] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    S. Antusch and E. Fernandez-Martinez, Signals of CPT Violation and Non-Locality in Future Neutrino Oscillation Experiments, Phys. Lett. B 665 (2008) 190 [arXiv:0804.2820] [INSPIRE].ADSGoogle Scholar
  26. [26]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].
  27. [27]
    S. Stoica, V. Paun and A. Negoita, Nuclear effects on neutrino emissivities from nucleon-nucleon bremsstrahlung, Phys. Rev. C 69 (2004) 068801 [INSPIRE].ADSGoogle Scholar
  28. [28]
    Particle Data Group collaboration, C. Amsler et al., Review of Particle Physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Vogel and J. Engel, Neutrino Electromagnetic Form-Factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Vogel and J.F. Beacom, Angular distribution of neutron inverse beta decay, \( \overline \nu e + p \to {e^{+} } + n \) Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [INSPIRE].ADSGoogle Scholar
  31. [31]
    I. Nemchenok, Liquid scintillator on the base of the linear alkybenzene, Daya Bay internal report.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Rupert Leitner
    • 1
  • Michal Malinský
    • 2
    Email author
  • Bedřich Roskovec
    • 1
  • He Zhang
    • 3
  1. 1.Institute of Particle and Nuclear Physics, Faculty of Mathematics and PhysicsCharles University in PraguePraha 8Czech Republic
  2. 2.AHEP Group, Instituto de Física CorpuscularC.S.I.C. - Universitat de València, Edificio de Institutos de PaternaValènciaSpain
  3. 3.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations