Advertisement

Journal of High Energy Physics

, 2010:87 | Cite as

A note on dual MHV diagrams in \( \mathcal{N} = 4 \) SYM

  • Andreas Brandhuber
  • Bill Spence
  • Gabriele Travaglini
  • Gang YangEmail author
Article

Abstract

Recently a reformulation of the MHV diagram method in \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theory in momentum twistor space was presented and was shown to be equivalent to the perturbative expansion of the expectation value of a supersymmetric Wilson loop in momentum twistor space. In this note we present related explicit Feynman rules in dual momentum space, which should have the interpretation of Wilson loop diagrams in dual momentum space. We show that these novel rules are completely equivalent to ordinary spacetime MHV rules and can be naturally viewed as their graph dual representation.

Keywords

Supersymmetry and Duality Extended Supersymmetry Duality in Gauge Field Theories AdS-CFT Correspondence 

References

  1. [1]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. [2]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in N = 4 super Yang-Mills from MHV vertices, Nucl. Phys. B 706 (2005) 150 [hep-th/0407214] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    A. Brandhuber, B. Spence and G. Travaglini, From trees to loops and back, JHEP 01 (2006) 142 [hep-th/0510253] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A twistor approach to one-loop amplitudes in N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 706 (2005) 100 [hep-th/0410280] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    C. Quigley and M. Rozali, One-loop MHV amplitudes in supersymmetric gauge theories, JHEP 01 (2005) 053 [hep-th/0410278] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59 [hep-th/0412108] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    A. Gorsky and A. Rosly, From Yang-Mills Lagrangian to MHV diagrams, JHEP 01 (2006) 101 [hep-th/0510111] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    P. Mansfield, The Lagrangian origin of MHV rules, JHEP 03 (2006) 037 [hep-th/0511264] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    R. Boels, L.J. Mason and D. Skinner, Supersymmetric gauge theories in twistor space, JHEP 02 (2007) 014 [hep-th/0604040] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    R. Boels, L.J. Mason and D. Skinner, From twistor actions to MHV diagrams, Phys. Lett. B 648 (2007) 90 [hep-th/0702035] [SPIRES].ADSMathSciNetGoogle Scholar
  12. [12]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    G.P. Korchemsky, J.M. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].ADSMathSciNetGoogle Scholar
  14. [14]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].ADSMathSciNetGoogle Scholar
  18. [18]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    C. Vergu, The two-loop MHV amplitudes in N = 4 supersymmetric Yang-Mills theory, arXiv:0908.2394 [SPIRES].
  21. [21]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, arXiv:1008.2958 [SPIRES].
  22. [22]
    L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    S. Caron-Huot, Notesonthescatteringamplitude/Wilson loopduality, arXiv:1010.1167 [SPIRES].
  24. [24]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [SPIRES].
  27. [27]
    M. Bullimore, L.J. Mason and D. Skinner, MHV diagrams in momentum twistor space, JHEP 12 (2010) 032 [arXiv:1009.1854] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    G. Georgiou and V.V. Khoze, Tree amplitudes in gauge theory as scalar MHV diagrams, JHEP 05 (2004) 070 [hep-th/0404072] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    G. Georgiou, E.W.N. Glover and V.V. Khoze, Non-MHV tree amplitudes in gauge theory, JHEP 07 (2004) 048 [hep-th/0407027] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, arXiv:1007.3243 [SPIRES].
  32. [32]
    B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, arXiv:1007.3246 [SPIRES].
  33. [33]
    B. Eden, G.P. Korchemsky and E. Sokatchev, More on the duality correlators/amplitudes, arXiv:1009.2488 [SPIRES].
  34. [34]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, arXiv:1006.2788 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Andreas Brandhuber
    • 1
  • Bill Spence
    • 1
  • Gabriele Travaglini
    • 1
  • Gang Yang
    • 1
    Email author
  1. 1.Centre for Research in String Theory, Department of PhysicsQueen Mary University of LondonLondonU.K.

Personalised recommendations