Journal of High Energy Physics

, 2010:85 | Cite as

Colored resonant signals at the LHC: largest rate and simplest topology



We study the colored resonance production at the LHC in a most general approach. We classify the possible colored resonances based on group theory decomposition, and construct their effective interactions with light partons. The production cross section from annihilation of valence quarks or gluons may be on the order of 400–1000 pb at LHC energies for a mass of 1 TeV with nominal couplings, leading to the largest production rates for new physics at the TeV scale, and simplest event topology with dijet final states. We apply the new dijet data from the LHC experiments to put bounds on various possible colored resonant states. The current bounds range from 0.9 to 2.7 TeV. The formulation is readily applicable for future searches including other decay modes.


Jets Beyond Standard Model Phenomenological Models Hadronic Colliders 


  1. [1]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [SPIRES].ADSGoogle Scholar
  4. [4]
    R.N. Mohapatra and R.E. Marshak, Local B-L symmetry of electroweak interactions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    Z. Chacko and R.N. Mohapatra, Supersymmetric SU(2)L × SU(2)R × SU(4)c and observable neutron antineutron oscillation, Phys. Rev. D 59 (1999) 055004 [hep-ph/9802388] [SPIRES].ADSGoogle Scholar
  6. [6]
    N. Cabibbo, L. Maiani and Y. Srivastava, Anomalous Z decays: excited leptons?, Phys. Lett. B 139 (1984) 459 [SPIRES].ADSGoogle Scholar
  7. [7]
    A. De Rujula, L. Maiani and R. Petronzio, Search for excited quarks, Phys. Lett. B 140 (1984) 253 [SPIRES].ADSGoogle Scholar
  8. [8]
    J.H. Kuhn and P.M. Zerwas, Excited quarks and leptons, Phys. Lett. B 147 (1984) 189 [SPIRES].ADSGoogle Scholar
  9. [9]
    U. Baur, I. Hinchliffe and D. Zeppenfeld, Excited quark production at hadron colliders, Int. J. Mod. Phys. A 2 (1987) 1285 [SPIRES].ADSGoogle Scholar
  10. [10]
    U. Baur, M. Spira and P.M. Zerwas, Excited quark and lepton production at hadron colliders, Phys. Rev. D 42 (1990) 815 [SPIRES].ADSGoogle Scholar
  11. [11]
    P.H. Frampton and S.L. Glashow, Chiral color: an alternative to the standard model, Phys. Lett. B 190 (1987) 157 [SPIRES].ADSGoogle Scholar
  12. [12]
    S.P. Martin, A Tumbling top quark condensate model, Phys. Rev. D 46 (1992) 2197 [hep-ph/9204204] [SPIRES].ADSGoogle Scholar
  13. [13]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Leptons and photons at the LHC: Cascades through spinless adjoints, JHEP 07 (2007) 006 [hep-ph/0703231] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Massive color-octet bosons and pairs of resonances at hadron colliders, Phys. Lett. B 670 (2008) 119 [arXiv:0709.2378] [SPIRES].ADSGoogle Scholar
  16. [16]
    J. Bagger, C. Schmidt and S. King, A xigluon production in hadronic collisions, Phys. Rev. D 37 (1988) 1188 [SPIRES].ADSGoogle Scholar
  17. [17]
    C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [SPIRES].ADSGoogle Scholar
  18. [18]
    C.T. Hill and S.J. Parke, Top production: sensitivity to new physics, Phys. Rev. D 49 (1994) 4454 [hep-ph/9312324] [SPIRES].ADSGoogle Scholar
  19. [19]
    R.S. Chivukula, A.G. Cohen and E.H. Simmons, New strong interactions at the Tevatron?, Phys. Lett. B 380 (1996) 92 [hep-ph/9603311] [SPIRES].ADSGoogle Scholar
  20. [20]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].ADSGoogle Scholar
  21. [21]
    B. Lillie, L. Randall and L.-T. Wang, The Bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    B. Lillie, J. Shu and T.M.P. Tait, Kaluza-Klein gluons as a diagnostic of warped models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [SPIRES].ADSGoogle Scholar
  23. [23]
    S. Cullen, M. Perelstein and M.E. Peskin, TeV strings and collider probes of large extra dimensions, Phys. Rev. D 62 (2000) 055012 [hep-ph/0001166] [SPIRES].ADSGoogle Scholar
  24. [24]
    P. Burikham, T. Figy and T. Han, TeV -scale string resonances at hadron colliders, Phys. Rev. D 71 (2005) 016005 [Erratum ibid. D 71 (2005) 019905] [hep-ph/0411094] [SPIRES].ADSGoogle Scholar
  25. [25]
    Z. Dong, T. Han, M.-x. Huang and G. Shiu, Top quarks as a window to string resonances, JHEP 09 (2010) 048 [arXiv:1004.5441] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    L.A. Anchordoqui, H. Goldberg and T.R. Taylor, Decay widths of lowest massiveRegge excitations of open strings, Phys. Lett. B 668 (2008) 373 [arXiv:0806.3420] [SPIRES].ADSGoogle Scholar
  27. [27]
    L.A. Anchordoqui et al., Dijet signals for low mass strings at the LHC, Phys. Rev. Lett. 101 (2008) 241803 [arXiv:0808.0497] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    ATLAS collaboration and others, Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC, ATLAS-CONF-2010-093, Phys. Rev. Lett. 105 (2010) 161801 [arXiv:1008.2461] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    CMS collaboration, V. Khachatryan et al., Search for Dijet resonances in 7 TeV pp Collisions at CMS, Phys. Rev. Lett. 105 (2010) 211801 [arXiv:1010.0203] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    R.S. Chivukula, M. Golden and E.H. Simmons, Six jet signals of highly colored fermions, Phys. Lett. B 257 (1991) 403 [SPIRES].ADSGoogle Scholar
  31. [31]
    C.W. Bauer, Z. Ligeti, M. Schmaltz, J. Thaler and D.G.E. Walker, Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [SPIRES].ADSGoogle Scholar
  32. [32]
    R. Barbieri and R. Torre, Signals of single particle production at the earliest LHC, arXiv:1008.5302 [SPIRES].
  33. [33]
    V. Barger, T. Han and D.G.E. Walker, Top quark pairs at high invariant mass: A model-independent discriminator of new physics at the LHC, Phys. Rev. Lett. 100 (2008) 031801 [hep-ph/0612016] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    E. Ma, M. Raidal and U. Sarkar, Probing the exotic particle content beyond the standard model, Eur. Phys. J. C 8 (1999) 301 [hep-ph/9808484] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the large hadron collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    R.S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99 [SPIRES].ADSGoogle Scholar
  38. [38]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    J.M. Arnold, M. Pospelov, M. Trott and M.B. Wise, Scalar representations and minimal flavor violation, JHEP 01 (2010) 073 [arXiv:0911.2225] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    R.N. Mohapatra, N. Okada and H.-B. Yu, Diquark higgs at LHC, Phys. Rev. D 77 (2008) 011701 [arXiv:0709.1486] [SPIRES].ADSGoogle Scholar
  41. [41]
    K.S. Babu, R.N. Mohapatra and S. Nasri, Unified TeV scale picture of baryogenesis and dark matter, Phys. Rev. Lett. 98 (2007) 161301 [hep-ph/0612357] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    S. Atag, O. Cakir and S. Sultansoy, Resonance production of diquarks at the CERN LHC, Phys. Rev. D 59 (1999) 015008 [SPIRES].ADSGoogle Scholar
  43. [43]
    E. Arik, O. Cakir, S.A. Cetin and S. Sultansoy, A search for vector diquarks at the CERN LHC, JHEP 09 (2002) 024 [hep-ph/0109011] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    O. Cakir and M. Sahin, Resonant production of diquarks at high energy pp, ep and e + e colliders, Phys. Rev. D 72 (2005) 115011 [hep-ph/0508205] [SPIRES].ADSGoogle Scholar
  45. [45]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, G. Shaughnessy and H. Zhang, Color sextet scalars in early LHC experiments, Phys. Rev. Lett. 105 (2010) 181802 [arXiv:1005.2622] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    H. Zhang, E.L. Berger, Q.-H. Cao, C.-R. Chen and G. Shaughnessy, Color sextet vector bosons and same-sign top quark pairs at the LHC, arXiv:1009.5379 [SPIRES].
  47. [47]
    A. Celikel, M. Kantar and S. Sultansoy, A search for sextet quarks and leptogluons at the LHC, Phys. Lett. B 443 (1998) 359 [SPIRES].ADSGoogle Scholar
  48. [48]
    E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, Signatures for technicolor, Phys. Rev. D 34 (1986) 1547 [SPIRES].ADSGoogle Scholar
  49. [49]
    M.I. Gresham and M.B. Wise, Color octet scalar production at the LHC, Phys. Rev. D 76 (2007) 075003 [arXiv:0706.0909] [SPIRES].ADSGoogle Scholar
  50. [50]
    M. Gerbush, T.J. Khoo, D.J. Phalen, A. Pierce and D. Tucker-Smith, Color-octet scalars at the LHC, Phys. Rev. D 77 (2008) 095003 [arXiv:0710.3133] [SPIRES].ADSGoogle Scholar
  51. [51]
    T. Plehn and T.M.P. Tait, Seeking sgluons, J. Phys. G 36 (2009) 075001 [arXiv:0810.3919] [SPIRES].ADSGoogle Scholar
  52. [52]
    S.Y. Choi et al., Color-octet scalars of N = 2 supersymmetry at the LHC, Phys. Lett. B 672 (2009) 246 [arXiv:0812.3586] [SPIRES].ADSGoogle Scholar
  53. [53]
    A. Idilbi, C. Kim and T. Mehen, Factorization and resummation for single color-octet scalar production at the LHC, Phys. Rev. D 79 (2009) 114016 [arXiv:0903.3668] [SPIRES].ADSGoogle Scholar
  54. [54]
    A.V. Manohar and M.B. Wise, Flavor changing neutral currents, an extended scalar sector and the Higgs production rate at the LHC, Phys. Rev. D 74 (2006) 035009 [hep-ph/0606172] [SPIRES].ADSGoogle Scholar
  55. [55]
    P. Fileviez Perez, R. Gavin, T. McElmurry and F. Petriello, Grand unification and light color-octet scalars at the LHC, Phys. Rev. D 78 (2008) 115017 [arXiv:0809.2106] [SPIRES].ADSGoogle Scholar
  56. [56]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    T. Han, I. Lewis and T. McElmurry, QCD corrections to scalar diquark production at hadron colliders, JHEP 01 (2010) 123 [arXiv:0909.2666] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    D0 collaboration, V.M. Abazov et al., Measurement of dijet angular distributions at \( \sqrt {s} = 1.96TeV \) and searches for quark compositeness and extra spatial dimensions, Phys. Rev. Lett. 103 (2009) 191803 [arXiv:0906.4819] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    ATLAS collaboration, G. Aad et al., Search for quark contact interactions in Dijet angular distributions in pp collisions at \( \sqrt {s} = 7\;TeV \) measured with the ATLAS detector, arXiv:1009.5069 [SPIRES].
  60. [60]
    CMS collaboration, V. Khachatryan et al., Search for quark compositeness with the Dijet centrality ratio in pp collisions at \( \sqrt {s} = 7\;TeV \), arXiv:1010.4439 [SPIRES].
  61. [61]
    E. Eichten, K.D. Lane and M.E. Peskin, New tests for quark and lepton substructure, Phys. Rev. Lett. 50 (1983) 811 [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [SPIRES].ADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of Physics, 1150 University AvenueUniversity of WisconsinMadisonU.S.A.

Personalised recommendations