Journal of High Energy Physics

, 2010:83 | Cite as

Standard model vacua for two-dimensional compactifications

  • Jonathan M. Arnold
  • Bartosz FornalEmail author
  • Mark B. Wise


We examine the structure of lower-dimensional standard model vacua for two-dimensional compactifications (on a 2D torus and on a 2D sphere). In the case of the torus we find a new standard model vacuum for a large range of neutrino masses consistent with experiment. Quantum effects play a crucial role in the existence of this vacuum. For the compactification on a sphere the classical terms dominate the effective potential for large radii and a stable vacuum is achieved only by introducing a large magnetic flux. We argue that there are no two-dimensional standard model vacua for compactifications on a surface of genus greater than one.


Standard Model Compactification and String Models Neutrino Physics 


  1. [1]
    N. Arkani-Hamed, S. Dubovsky, A. Nicolis and G. Villadoro, Quantum horizons of the standard model landscape, JHEP 06 (2007) 078 [hep-th/0703067] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    P.W. Graham, R. Harnik and S. Rajendran, Observing the dimensionality of our parent vacuum, Phys. Rev. D 82 (2010) 063524 [arXiv:1003.0236] [SPIRES].ADSGoogle Scholar
  3. [3]
    J.J. Blanco-Pillado and M.P. Salem, Observable effects of anisotropic bubble nucleation, JCAP 07 (2010) 007 [arXiv:1003.0663] [SPIRES].ADSGoogle Scholar
  4. [4]
    J. Adamek, D. Campo and J.C. Niemeyer, Anisotropic Kantowski-Sachs universe from gravitational tunneling and its observational signatures, Phys. Rev. D 82 (2010) 086006 [arXiv:1003.3204] [SPIRES].ADSGoogle Scholar
  5. [5]
    J.J. Blanco-Pillado, D. Schwartz-Perlov and A. Vilenkin, Transdimensional tunneling in the multiverse, JCAP 05 (2010) 005 [arXiv:0912.4082] [SPIRES].ADSGoogle Scholar
  6. [6]
    S.M. Carroll, M.C. Johnson and L. Randall, Dynamical compactification from de Sitter space, JHEP 11 (2009) 094 [arXiv:0904.3115] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    D.M. Ghilencea, D. Hoover, C.P. Burgess and F. Quevedo, Casimir energies for 6D supergravities compactified on \( {{{{\mathcal{T}_2}}} \left/ {{{Z_N}}} \right.} \) with Wilson lines, JHEP 09 (2005) 050 [hep-th/0506164] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    M. Ito, Casimir energies due to matters fields in T 2 and T 2 /Z 2 compactifications, Nucl. Phys. B 668 (2003) 322 [hep-ph/0301168] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    W. Buchmüller, R. Catena and K. Schmidt-Hoberg, Small extra dimensions from the interplay of gauge and supersymmetry breaking, Nucl. Phys. B 804 (2008) 70 [arXiv:0803.4501] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    W. Buchmüller, R. Catena and K. Schmidt-Hoberg, Enhanced symmetries of orbifolds from moduli stabilization, Nucl. Phys. B 821 (2009) 1 [arXiv:0902.4512] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    B.R. Greene and J. Levin, Dark energy and stabilization of extra dimensions, JHEP 11 (2007) 096 [arXiv:0707.1062] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    P. Burikham, A. Chatrabhuti, P. Patcharamaneepakorn and K. Pimsamarn, Dark energy and moduli stabilization of extra dimensions in M 1+3 × T 2 spacetime, JHEP 07 (2008) 013 [arXiv:0802.3564] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    E. Ponton and E. Poppitz, Casimir energy and radius stabilization in five and six dimensional orbifolds, JHEP 06 (2001) 019 [hep-ph/0105021] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Chatrabhuti, P. Patcharamaneepakorn and P. Wongjun, Æther field, Casimir energy and stabilization of the extra dimension, JHEP 08 (2009) 019 [arXiv:0905.0328] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    M.A. Rubin and B.D. Roth, Fermions and stability in five-dimensional Kaluza-Klein theory, Phys. Lett. B 127 (1983) 55 [SPIRES].ADSMathSciNetGoogle Scholar
  16. [16]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  17. [17]
    A.D. Shapere and F. Wilczek, Selfdual models with theta terms, Nucl. Phys. B 320 (1989) 669 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    E. Elizalde, Analysis of an inhomogeneous generalized Epstein-Hurwitz zeta function with physical applications, J. Math. Phys. 35 (1994) 6100 [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  19. [19]
    E. Elizalde, Multidimensional extension of the generalized Chowla-Selberg formula, Commun. Math. Phys. 198 (1998) 83 [hep-th/9707257] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  20. [20]
    E. T. Wittaker and G. N. Watson, A course of modern analysis, Cambridge University Press, Cambridge U.K. (1965).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Jonathan M. Arnold
    • 1
  • Bartosz Fornal
    • 1
    Email author
  • Mark B. Wise
    • 1
  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations