Advertisement

Journal of High Energy Physics

, 2010:77 | Cite as

LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM

  • J. N. Esteves
  • J. C. Romao
  • M. Hirsch
  • A. VicenteEmail author
  • W. Porod
  • F. Staub
Article

Abstract

We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric “pure seesaw” models, both, LFV and slepton mass splittings, occur not only in the left-but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as \( {{{{\text{Br}}\left( {{{\tilde{\tau }}_R} \to \mu \chi_1^0} \right)}} \left/ {{{\text{Br}}\left( {{{\tilde{\tau }}_L} \to \mu \chi_1^0} \right)}} \right.} \) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay μ +e +γ, \( \mathcal{A} \sim \left[ {0,1} \right] \), which differs from the pure seesaw “prediction” \( \mathcal{A} = 1 \). Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  2. [2]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in KEK lectures, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979) [SPIRES].Google Scholar
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewenhuizen and D. Freedman eds., North Holland, Amsterdam The Netherlands (1979) [SPIRES].Google Scholar
  4. [4]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  6. [6]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].ADSGoogle Scholar
  7. [7]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802CrossRefADSGoogle Scholar
  10. [10]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  12. [12]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. 0Rev. Lett. 57 (1986) 961 [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [SPIRES].ADSGoogle Scholar
  14. [14]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].ADSGoogle Scholar
  15. [15]
    J.R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, A new parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66 (2002) 115013 [hep-ph/0206110] [SPIRES].ADSGoogle Scholar
  16. [16]
    F. Deppisch, H. Pas, A. Redelbach, R. Ruckl and Y. Shimizu, Probing the Majorana mass scale of right-handed neutrinos in mSUGRA , Eur. Phys. J. C 28 (2003) 365 [hep-ph/0206122] [SPIRES].ADSGoogle Scholar
  17. [17]
    S.T. Petcov, S. Profumo, Y. Takanishi and C.E. Yaguna, Charged lepton flavor violating decays: leading logarithmic approximation versus full RG results, Nucl. Phys. B 676 (2004) 453 [hep-ph/0306195] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [SPIRES].ADSGoogle Scholar
  19. [19]
    S.T. Petcov, T. Shindou and Y. Takanishi, Majorana CP-violating phases, RG running of neutrino mixing parameters and charged lepton flavour violating decays, Nucl. Phys. B 738 (2006) 219 [hep-ph/0508243] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    S. Antusch, E. Arganda, M.J. Herrero and A.M. Teixeira, Impact of θ 13 on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    F. Deppisch and J.W.F. Valle, Enhanced lepton flavour violation in the supersymmetric inverse seesaw model, Phys. Rev. D 72 (2005) 036001 [hep-ph/0406040] [SPIRES].ADSGoogle Scholar
  22. [22]
    M. Hirsch, J.W.F. Valle, W. Porod, J.C. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [SPIRES].ADSGoogle Scholar
  23. [23]
    E. Arganda, M.J. Herrero and A.M. Teixeira, μe conversion in nuclei within the CMSSM seesaw: universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    F. Deppisch, T.S. Kosmas and J.W.F. Valle, Enhanced μ e conversion in nuclei in the inverse seesaw model, Nucl. Phys. B 752 (2006) 80 [hep-ph/0512360] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    A. Rossi, Supersymmetric seesaw without singlet neutrinos: neutrino masses and lepton-flavour violation, Phys. Rev. D 66 (2002) 075003 [hep-ph/0207006] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Hirsch, S. Kaneko and W. Porod, Supersymmetric seesaw type-II: LHC and lepton flavour violating phenomenology, Phys. Rev. D 78 (2008) 093004 [arXiv:0806.3361] [SPIRES].ADSGoogle Scholar
  27. [27]
    J.N. Esteves, M. Hirsch, W. Porod, J.C. Romao and F. Staub, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, arXiv:1010.6000 [SPIRES].
  28. [28]
    J. Hisano, M.M. Nojiri, Y. Shimizu and M. Tanaka, Lepton flavor violation in the left-handed slepton production at future lepton colliders, Phys. Rev. D 60 (1999) 055008 [hep-ph/9808410] [SPIRES].ADSGoogle Scholar
  29. [29]
    J.N. Esteves et al., Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity, JHEP 05 (2009) 003 [arXiv:0903.1408] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    G.A. Blair, W. Porod and P.M. Zerwas, The reconstruction of supersymmetric theories at high energy scales, Eur. Phys. J. C 27 (2003) 263 [hep-ph/0210058] [SPIRES].ADSGoogle Scholar
  31. [31]
    A. Freitas, W. Porod and P.M. Zerwas, Determining sneutrino masses and physical implications, Phys. Rev. D 72 (2005) 115002 [hep-ph/0509056] [SPIRES].ADSGoogle Scholar
  32. [32]
    F. Deppisch, A. Freitas, W. Porod and P.M. Zerwas, Determining heavy mass parameters in supersymmetric SO(10) models, Phys. Rev. D 77 (2008) 075009 [arXiv:0712.0361] [SPIRES].ADSGoogle Scholar
  33. [33]
    M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    B.C. Allanach, J.P. Conlon and C.G. Lester, Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking, Phys. Rev. D 77 (2008) 076006 [arXiv:0801.3666] [SPIRES].ADSGoogle Scholar
  35. [35]
    A. Abada, A.J.R. Figueiredo, J.C. Romao and A.M. Teixeira, Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw, JHEP 10 (2010) 104 [arXiv:1007.4833] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [SPIRES].ADSGoogle Scholar
  37. [37]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [SPIRES].ADSGoogle Scholar
  38. [38]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [SPIRES].ADSGoogle Scholar
  39. [39]
    H. Georgi, The state of the art — gauge theories (Talk), AIP Conf. Proc. 23 (1975) 575 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    R.N. Mohapatra and A. Rasin, A supersymmetric solution to CP problems, Phys. Rev. D 54 (1996) 5835 [hep-ph/9604445] [SPIRES].ADSGoogle Scholar
  42. [42]
    R.N. Mohapatra, New contributions to neutrinoless double-β decay in supersymmetric theories, Phys. Rev. D 34 (1986) 3457 [SPIRES].ADSGoogle Scholar
  43. [43]
    S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [SPIRES].ADSGoogle Scholar
  44. [44]
    M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    M. Cvetič and J.C. Pati, N = 1 supergravity within the minimal left-right symmetric model, Phys. Lett. B 135 (1984) 57 [SPIRES].ADSGoogle Scholar
  46. [46]
    E.K. Akhmedov and M. Frigerio, Interplay of type-I and type-II seesaw contributions to neutrino mass, JHEP 01 (2007) 043 [hep-ph/0609046] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    R. Kuchimanchi and R.N. Mohapatra, No parity violation without R-parity violation, Phys. Rev. D 48 (1993) 4352 [hep-ph/9306290] [SPIRES].ADSGoogle Scholar
  48. [48]
    K.S. Babu and R.N. Mohapatra, Minimal supersymmetric left-right model, Phys. Lett. B 668 (2008) 404 [arXiv:0807.0481] [SPIRES].ADSGoogle Scholar
  49. [49]
    R. Kuchimanchi and R.N. Mohapatra, Upper bound on the W R mass in automatically R-conserving SUSY models, Phys. Rev. Lett. 75 (1995) 3989 [hep-ph/9509256] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    C.S. Aulakh, K. Benakli and G. Senjanović, Reconciling supersymmetry and left-right symmetry, Phys. Rev. Lett. 79 (1997) 2188 [hep-ph/9703434] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    C.S. Aulakh, A. Melfo, A. Rasin and G. Senjanović, Supersymmetry and large scale left-right symmetry, Phys. Rev. D 58 (1998) 115007 [hep-ph/9712551] [SPIRES].ADSGoogle Scholar
  52. [52]
    M.J. Hayashi and A. Murayama, Radiative breaking of SU(2)R × U(1)(BL) gauge symmetry induced by broken N = 1 supergravity in a left-right symmetric model, Phys. Lett. B 153 (1985) 251 [SPIRES].ADSGoogle Scholar
  53. [53]
    P. Fileviez Perez and S. Spinner, Spontaneous R-parity breaking and left-right symmetry, Phys. Lett. B 673 (2009) 251 [arXiv:0811.3424] [SPIRES].ADSGoogle Scholar
  54. [54]
    N. Setzer and S. Spinner, One-loop RGEs for two left-right SUSY models, Phys. Rev. D 71 (2005) 115010 [hep-ph/0503244] [SPIRES].ADSGoogle Scholar
  55. [55]
    W. Chao, Neutrino masses and lepton-flavor-violating τ decays in the supersymmetric left-right model, arXiv:0705.4351 [SPIRES].
  56. [56]
    R. Barbieri and L.J. Hall, Signals for supersymmetric unification, Phys. Lett. B 338 (1994) 212 [hep-ph/9408406] [SPIRES].ADSGoogle Scholar
  57. [57]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [SPIRES].ADSGoogle Scholar
  58. [58]
    F. Staub, SA RA H, arXiv:0806.0538 [SPIRES].
  59. [59]
    F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, arXiv:1002.0840 [SPIRES].
  61. [61]
  62. [62]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    K.S. Babu, B. Dutta and R.N. Mohapatra, Partial Yukawa unification and a supersymmetric origin of flavor mixing, Phys. Rev. D 60 (1999) 095004 [hep-ph/9812421] [SPIRES].ADSGoogle Scholar
  64. [64]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    MINOS collaboration, Preliminary results from MINOS on muon neutrino disappearance based on an exposure of 2.5 × 1020 120 GeV protons on the NuMI target, arXiv:0708.1495. [SPIRES].
  66. [66]
    KamLAND collaboration, S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  68. [68]
    K.S. Babu, B. Dutta and R.N. Mohapatra, Lepton flavor violation and the origin of the seesaw mechanism, Phys. Rev. D 67 (2003) 076006 [hep-ph/0211068] [SPIRES].ADSGoogle Scholar
  69. [69]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    L.J. Hall, Grand unification of effective gauge theories, Nucl. Phys. B 178 (1981) 75 [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    J. Kopp, M. Lindner, V. Niro and T.E.J. Underwood, On the consistency of perturbativity and gauge coupling unification, Phys. Rev. D 81 (2010) 025008 [arXiv:0909.2653] [SPIRES].ADSGoogle Scholar
  72. [72]
    S.K. Majee, M.K. Parida, A. Raychaudhuri and U. Sarkar, Low intermediate scales for leptogenesis in supersymmetric SO(10) grand unified theories, Phys. Rev. D 75 (2007) 075003 [hep-ph/0701109] [SPIRES].ADSGoogle Scholar
  73. [73]
    W. Martens, L. Mihaila, J. Salomon and M. Steinhauser, Minimal supersymmetric SU(5) and gauge coupling unification at three loops, arXiv:1008.3070 [SPIRES].
  74. [74]
    D. Borah and U.A. Yajnik, Supersymmetric left-right models with gauge coupling unification and fermion mass universality, arXiv:1010.6289 [SPIRES].
  75. [75]
    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), Snowmass U.S.A. June 30– July 21 2001, N. Graf ed., [Eur. Phys. J. C 25 (2002) 113] [ hep-ph/0202233] [SPIRES].
  77. [77]
    S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D2 (1970) 1285 [SPIRES].ADSGoogle Scholar
  78. [78]
    MEG collaboration, MEG: search for μ → eγ down to 10−14 branching ratio, proposal to PSI, Paul Scherrer Institute, Switzerland.Google Scholar
  79. [79]
    MEG collaboration, S. Mihara, MEG experiment at the Paul Scherrer Institute, Nucl. Phys. A 844 (2010) 150c [SPIRES].ADSGoogle Scholar
  80. [80]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [SPIRES].CrossRefADSGoogle Scholar
  81. [81]
    Y. Okada, K.-I. Okumura and Y. Shimizu, μ → eγ and μ → 3e processes with polarized muons and supersymmetric grand unified theories, Phys. Rev. D 61 (2000) 094001 [hep-ph/9906446] [SPIRES].ADSGoogle Scholar
  82. [82]
    J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, Waiting for μ → eγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [SPIRES].CrossRefADSGoogle Scholar
  83. [83]
    I. Hinchliffe and F.E. Paige, Lepton flavor violation at the LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [SPIRES].ADSGoogle Scholar
  84. [84]
    D.F. Carvalho, J.R. Ellis, M.E. Gomez, S. Lola and J.C. Romao, τ flavour violation in sparticle decays at the LHC, Phys. Lett. B 618 (2005) 162 [hep-ph/0206148] [SPIRES].ADSGoogle Scholar
  85. [85]
    E. Carquin, J. Ellis, M.E. Gomez, S. Lola and J. Rodriguez-Quintero, Search for τ flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [SPIRES].CrossRefADSGoogle Scholar
  86. [86]
    F.E. Paige, Determining SUSY particle masses at LHC, hep-ph/9609373 [SPIRES].
  87. [87]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].ADSGoogle Scholar
  88. [88]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].ADSGoogle Scholar
  89. [89]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar
  90. [90]
    The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  91. [91]
    B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in non-universal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [SPIRES].CrossRefADSGoogle Scholar
  92. [92]
    A. Bartl et al., Test of lepton flavour violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [SPIRES].CrossRefADSGoogle Scholar
  93. [93]
    A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [SPIRES].CrossRefADSGoogle Scholar
  94. [94]
    Y.M. Andreev, S.I. Bityukov, N.V. Krasnikov and A.N. Toropin, Using the e ± μ + ET miss signature in the search for supersymmetry and lepton flavour violation in neutralino decays, Phys. Atom. Nucl. 70 (2007) 1717 [hep-ph/0608176] [SPIRES].CrossRefADSGoogle Scholar
  95. [95]
    F. del Aguila et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [SPIRES].ADSGoogle Scholar
  96. [96]
    P.C. West, The Yukawa β-function in N = 1 rigid supersymmetric theories, Phys. Lett. B 137 (1984) 371 [SPIRES].ADSGoogle Scholar
  97. [97]
    D.R.T. Jones and L. Mezincescu, The chiral anomaly and a class of two loop finite supersymmetric gauge theories, Phys. Lett. B 138 (1984) 293 [SPIRES].ADSGoogle Scholar
  98. [98]
    I. Jack, D.R.T. Jones and A. Pickering, Renormalisation invariance and the soft β-functions, Phys. Lett. B 426 (1998) 73 [hep-ph/9712542] [SPIRES].ADSMathSciNetGoogle Scholar
  99. [99]
    Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: supergraph method, Phys. Rev. D 50 (1994) 3537 [hep-ph/9401241] [SPIRES].ADSGoogle Scholar
  100. [100]
    I. Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn and Y. Yamada, Decoupling of the ϵ scalar mass in softly broken supersymmetry, Phys. Rev. D 50 (1994) 5481 [hep-ph/9407291] [SPIRES].ADSGoogle Scholar
  101. [101]
    I. Jack, D.R.T. Jones and A. Pickering, The soft scalar mass β-function, Phys. Lett. B 432 (1998) 114 [hep-ph/9803405] [SPIRES].ADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • J. N. Esteves
    • 1
  • J. C. Romao
    • 1
  • M. Hirsch
    • 2
  • A. Vicente
    • 2
    Email author
  • W. Porod
    • 3
  • F. Staub
    • 3
  1. 1.Departamento de Física and CFTPInstituto Superior TécnicoLisboaPortugal
  2. 2.A HEP Group, Instituto de Física Corpuscular — C.S.I.C./Universitat de València, Edificio de Institutos de PaternaValènciaSpain
  3. 3.Institut für Theoretische Physik und AstronomieUniversität WürzburgWuerzburgGermany

Personalised recommendations